Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 May;64(5):1858–1861. doi: 10.1128/iai.64.5.1858-1861.1996

Uptake and killing of Lyme disease and relapsing fever borreliae in the perfused rat liver and by isolated Kupffer cells.

V Sambri 1, R Aldini 1, F Massaria 1, M Montagnani 1, S Casanova 1, R Cevenini 1
PMCID: PMC174005  PMID: 8613404

Abstract

In situ-perfused rat livers were infused with a single dose of 1.5 x 10(7) radiolabeled borreliae. Significant (P < 0.00005) differences in the liver uptake of the agents of Lyme borreliosis, Borrelia burgdorferi IRS, Borrelia afzelii VS461, and Borrelia garinii PBi, and that of the agents of relapsing fever, Borrelia hermsii, Borrelia parkeri, and Borrelia turicatae, were observed. The liver uptakes ranged between 65.9% for B. burgdorferi IRS and 40.5% for B. turicatae. Neither relapsing fever nor Lyme disease borreliae were recovered from infected livers when the livers were cultured in Barbour-Stoenner-Kelly II medium. The in vitro uptake of B. burgdorferi IRS by isolated rat Kupffer cells was rapid, and within 30 min of the infection, large intracellular aggregates of amorphous material were detectable by immunofluorescence with specific anti-B. burgdorferi antibody. The reculturing of B. burgdorferi IRS from Kupffer cells incubated for 24 h in RPMI medium before inoculation with bacteria was negative. The results obtained in this study indicated that borreliae are efficiently taken up and killed by rat hepatic macrophages in the absence of serum factors.

Full Text

The Full Text of this article is available as a PDF (396.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldini R., Roda A., Simoni P., Lenzi P., Roda E. Uptake of bile acids by perfused rat liver: evidence of a structure-activity relationship. Hepatology. 1989 Nov;10(5):840–845. doi: 10.1002/hep.1840100515. [DOI] [PubMed] [Google Scholar]
  2. Barbour A. G., Tessier S. L., Hayes S. F. Variation in a major surface protein of Lyme disease spirochetes. Infect Immun. 1984 Jul;45(1):94–100. doi: 10.1128/iai.45.1.94-100.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barstad P. A., Coligan J. E., Raum M. G., Barbour A. G. Variable major proteins of Borrelia hermsii. Epitope mapping and partial sequence analysis of CNBr peptides. J Exp Med. 1985 Jun 1;161(6):1302–1314. doi: 10.1084/jem.161.6.1302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barthold S. W., Moody K. D., Terwilliger G. A., Duray P. H., Jacoby R. O., Steere A. C. Experimental Lyme arthritis in rats infected with Borrelia burgdorferi. J Infect Dis. 1988 Apr;157(4):842–846. doi: 10.1093/infdis/157.4.842. [DOI] [PubMed] [Google Scholar]
  5. Benach J. L., Fleit H. B., Habicht G. S., Coleman J. L., Bosler E. M., Lane B. P. Interactions of phagocytes with the Lyme disease spirochete: role of the Fc receptor. J Infect Dis. 1984 Oct;150(4):497–507. doi: 10.1093/infdis/150.4.497. [DOI] [PubMed] [Google Scholar]
  6. Bonventre P. F., Oxman E. Phagocytosis and intracellular disposition of viable bacteria by the isolated perfused rat liver. J Reticuloendothel Soc. 1965 Nov;2(4):313–325. [PubMed] [Google Scholar]
  7. Brandt M. E., Riley B. S., Radolf J. D., Norgard M. V. Immunogenic integral membrane proteins of Borrelia burgdorferi are lipoproteins. Infect Immun. 1990 Apr;58(4):983–991. doi: 10.1128/iai.58.4.983-991.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carter C. J., Bergström S., Norris S. J., Barbour A. G. A family of surface-exposed proteins of 20 kilodaltons in the genus Borrelia. Infect Immun. 1994 Jul;62(7):2792–2799. doi: 10.1128/iai.62.7.2792-2799.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cevenini R., Sambri V., Massaria F., Franchini R., D'Antuono A., Borda G., Negosanti M. Surface immunofluorescence assay for diagnosis of Lyme disease. J Clin Microbiol. 1992 Sep;30(9):2456–2461. doi: 10.1128/jcm.30.9.2456-2461.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crocker P. R., Blackwell J. M., Bradley D. J. Expression of the natural resistance gene Lsh in resident liver macrophages. Infect Immun. 1984 Mar;43(3):1033–1040. doi: 10.1128/iai.43.3.1033-1040.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Galbe J. L., Guy E., Zapatero J. M., Peerschke E. I., Benach J. L. Vascular clearance of Borrelia burgdorferi in rats. Microb Pathog. 1993 Mar;14(3):187–201. doi: 10.1006/mpat.1993.1019. [DOI] [PubMed] [Google Scholar]
  12. Hirakata Y., Tomono K., Tateda K., Matsumoto T., Furuya N., Shimoguchi K., Kaku M., Yamaguchi K. Role of bacterial association with Kupffer cells in occurrence of endogenous systemic bacteremia. Infect Immun. 1991 Jan;59(1):289–294. doi: 10.1128/iai.59.1.289-294.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klein A., Zhadkewich M., Margolick J., Winkelstein J., Bulkley G. Quantitative discrimination of hepatic reticuloendothelial clearance and phagocytic killing. J Leukoc Biol. 1994 Feb;55(2):248–252. doi: 10.1002/jlb.55.2.248. [DOI] [PubMed] [Google Scholar]
  14. MORTIMORE G. E. Effect of insulin on potassium transfer in isolated rat liver. Am J Physiol. 1961 Jun;200:1315–1319. doi: 10.1152/ajplegacy.1961.200.6.1315. [DOI] [PubMed] [Google Scholar]
  15. Montgomery R. R., Nathanson M. H., Malawista S. E. The fate of Borrelia burgdorferi, the agent for Lyme disease, in mouse macrophages. Destruction, survival, recovery. J Immunol. 1993 Feb 1;150(3):909–915. [PubMed] [Google Scholar]
  16. Moon R. J., Vrable R. A., Broka J. A. In situ separation of bacterial trapping and killing functions of the perfused liver. Infect Immun. 1975 Aug;12(2):411–418. doi: 10.1128/iai.12.2.411-418.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sambri V., Cevenini R. Incorporation of cysteine by Borrelia burgdorferi and Borrelia hermsii. Can J Microbiol. 1992 Oct;38(10):1016–1021. doi: 10.1139/m92-167. [DOI] [PubMed] [Google Scholar]
  18. Sambri V., Marangoni A., Massaria F., Farencena A., La Placa M., Cevenini R. Functional activities of antibodies directed against surface lipoproteins of Borrelia hermsii. Microbiol Immunol. 1995;39(8):623–627. doi: 10.1111/j.1348-0421.1995.tb02252.x. [DOI] [PubMed] [Google Scholar]
  19. Sambri V., Stefanelli C., Rossoni C., La Placa M., Cevenini R. Acylated proteins in Borrelia hermsii, Borrelia parkeri, Borrelia anserina, and Borrelia coriaceae. Appl Environ Microbiol. 1993 Nov;59(11):3938–3940. doi: 10.1128/aem.59.11.3938-3940.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Speert D. P., Loh B. A., Cabral D. A., Salit I. E. Nonopsonic phagocytosis of nonmucoid Pseudomonas aeruginosa by human neutrophils and monocyte-derived macrophages is correlated with bacterial piliation and hydrophobicity. Infect Immun. 1986 Jul;53(1):207–212. doi: 10.1128/iai.53.1.207-212.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES