Skip to main content
Occupational and Environmental Medicine logoLink to Occupational and Environmental Medicine
. 2001 Feb;58(2):73–80. doi: 10.1136/oem.58.2.73

Predictors of DMSA chelatable lead, tibial lead, and blood lead in 802 Korean lead workers

A Todd 1, B Lee 1, G Lee 1, K Ahn 1, E Moshier 1, B Schwartz 1
PMCID: PMC1740092  PMID: 11160984

Abstract

OBJECTIVES—To examine the interrelations among chelatable lead (by dimercaptosuccinic acid, DMSA), tibial lead, and blood lead concentrations in 802 Korean workers with occupational exposure to lead and 135 employed controls with only environmental exposure to lead.
METHODS—This was a cross sectional study wherein tibial lead, DMSA chelatable lead, and blood lead were measured. Linear regression was used to identify predictors of the three lead biomarkers, evaluating the influence of age, job duration, sex, education level, alcohol and tobacco use, creatinine clearance rate, and body mass index.
RESULTS—DMSA chelatable lead concentrations ranged from 4.8 to 2102.9 µg and were positively associated with age, current smoking, and creatinine clearance rate. On average, women had 64 µg less DMSA chelatable lead than men. When blood lead and its square were added to a model with age, sex, current smoking, body mass index, and creatinine clearance rate, blood lead accounted for the largest proportion of the variance and sex became of borderline significance. Tibial lead concentrations ranged from −7 to 338 µg/g bone mineral and were positively associated with age, job duration, and body mass index. Women had, on average, 9.7 µg/g less tibial lead than men. Blood lead concentrations ranged from 4.3 to 85.7 µg/dl and were positively associated with age and tibial lead, whereas current smokers had higher blood lead concentrations and women had lower blood lead concentrations.
CONCLUSIONS—The data suggest that age and sex are both predictors of DMSA chelatable lead, blood lead, and tibial lead concentrations and that tibial lead stores in older subjects are less bioavailable and may contribute less to blood lead concentrations than tibial lead stores in younger subjects. Although blood lead concentrations accounted for a large proportion of the variance in DMSA chelatable lead concentrations, suggesting that measurement of both in epidemiological studies may not be necessary, the efficacy of each measure in predicting health outcomes in epidemiological studies awaits further investigation.


Keywords: dimercaptosuccinic acid; bone lead; x ray fluorescence

Full Text

The Full Text of this article is available as a PDF (297.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry P. S. A comparison of concentrations of lead in human tissues. Br J Ind Med. 1975 May;32(2):119–139. doi: 10.1136/oem.32.2.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barry P. S., Mossman D. B. Lead concentrations in human tissues. Br J Ind Med. 1970 Oct;27(4):339–351. doi: 10.1136/oem.27.4.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Christoffersson J. O., Schütz A., Ahlgren L., Haeger-Aronsen B., Mattsson S., Skerfving S. Lead in finger-bone analysed in vivo in active and retired lead workers. Am J Ind Med. 1984;6(6):447–457. doi: 10.1002/ajim.4700060608. [DOI] [PubMed] [Google Scholar]
  4. Cory-Slechta D. A. Mobilization of lead over the course of DMSA chelation therapy and long-term efficacy. J Pharmacol Exp Ther. 1988 Jul;246(1):84–91. [PubMed] [Google Scholar]
  5. Gerhardsson L., Attewell R., Chettle D. R., Englyst V., Lundström N. G., Nordberg G. F., Nyhlin H., Scott M. C., Todd A. C. In vivo measurements of lead in bone in long-term exposed lead smelter workers. Arch Environ Health. 1993 May-Jun;48(3):147–156. doi: 10.1080/00039896.1993.9940813. [DOI] [PubMed] [Google Scholar]
  6. Heinegård D., Tiderström G. Determination of serum creatinine by a direct colorimetric method. Clin Chim Acta. 1973 Feb 12;43(3):305–310. doi: 10.1016/0009-8981(73)90466-x. [DOI] [PubMed] [Google Scholar]
  7. Hoppin J. A., Aro A., Hu H., Ryan P. B. In vivo bone lead measurement in suburban teenagers. Pediatrics. 1997 Sep;100(3 Pt 1):365–370. doi: 10.1542/peds.100.3.365. [DOI] [PubMed] [Google Scholar]
  8. Hu H. Bone lead as a new biologic marker of lead dose: recent findings and implications for public health. Environ Health Perspect. 1998 Aug;106 (Suppl 4):961–967. doi: 10.1289/ehp.98106s4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hu H., Milder F. L., Burger D. E. X-ray fluorescence measurements of lead burden in subjects with low-level community lead exposure. Arch Environ Health. 1990 Nov-Dec;45(6):335–341. doi: 10.1080/00039896.1990.10118752. [DOI] [PubMed] [Google Scholar]
  10. Hu H., Payton M., Korrick S., Aro A., Sparrow D., Weiss S. T., Rotnitzky A. Determinants of bone and blood lead levels among community-exposed middle-aged to elderly men. The normative aging study. Am J Epidemiol. 1996 Oct 15;144(8):749–759. doi: 10.1093/oxfordjournals.aje.a008999. [DOI] [PubMed] [Google Scholar]
  11. Kosnett M. J., Becker C. E., Osterloh J. D., Kelly T. J., Pasta D. J. Factors influencing bone lead concentration in a suburban community assessed by noninvasive K x-ray fluorescence. JAMA. 1994 Jan 19;271(3):197–203. [PubMed] [Google Scholar]
  12. Lee B. K., Schwartz B. S., Stewart W., Ahn K. D. Provocative chelation with DMSA and EDTA: evidence for differential access to lead storage sites. Occup Environ Med. 1995 Jan;52(1):13–19. doi: 10.1136/oem.52.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nilsson U., Attewell R., Christoffersson J. O., Schütz A., Ahlgren L., Skerfving S., Mattsson S. Kinetics of lead in bone and blood after end of occupational exposure. Pharmacol Toxicol. 1991 Jun;68(6):477–484. doi: 10.1111/j.1600-0773.1991.tb01273.x. [DOI] [PubMed] [Google Scholar]
  14. Pirkle J. L., Kaufmann R. B., Brody D. J., Hickman T., Gunter E. W., Paschal D. C. Exposure of the U.S. population to lead, 1991-1994. Environ Health Perspect. 1998 Nov;106(11):745–750. doi: 10.1289/ehp.98106745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rabinowitz M. B., Wetherill G. W., Kopple J. D. Kinetic analysis of lead metabolism in healthy humans. J Clin Invest. 1976 Aug;58(2):260–270. doi: 10.1172/JCI108467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roels H., Konings J., Green S., Bradley D., Chettle D., Lauwerys R. Time-integrated blood lead concentration is a valid surrogate for estimating the cumulative lead dose assessed by tibial lead measurement. Environ Res. 1995 May;69(2):75–82. doi: 10.1006/enrs.1995.1027. [DOI] [PubMed] [Google Scholar]
  17. Roy M. M., Gordon C. L., Beaumont L. F., Chettle D. R., Webber C. E. Further experience with bone lead content measurements in residents of southern Ontario. Appl Radiat Isot. 1997 Mar;48(3):391–396. doi: 10.1016/s0969-8043(96)00223-0. [DOI] [PubMed] [Google Scholar]
  18. Schwartz B. S., Lee B. K., Stewart W., Sithisarankul P., Strickland P. T., Ahn K. D., Kelsey K. delta-Aminolevulinic acid dehydratase genotype modifies four hour urinary lead excretion after oral administration of dimercaptosuccinic acid. Occup Environ Med. 1997 Apr;54(4):241–246. doi: 10.1136/oem.54.4.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schwartz B. S., Stewart W. F. Different associations of blood lead, meso 2,3-dimercaptosuccinic acid (DMSA)-chelatable lead, and tibial lead levels with blood pressure in 543 former organolead manufacturing workers. Arch Environ Health. 2000 Mar-Apr;55(2):85–92. doi: 10.1080/00039890009603392. [DOI] [PubMed] [Google Scholar]
  20. Schwartz B. S., Stewart W. F., Todd A. C., Links J. M. Predictors of dimercaptosuccinic acid chelatable lead and tibial lead in former organolead manufacturing workers. Occup Environ Med. 1999 Jan;56(1):22–29. doi: 10.1136/oem.56.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schütz A., Skerfving S., Christoffersson J. O., Ahlgren L., Mattson S. Lead in vertebral bone biopsies from active and retired lead workers. Arch Environ Health. 1987 Nov-Dec;42(6):340–346. doi: 10.1080/00039896.1987.9934356. [DOI] [PubMed] [Google Scholar]
  22. Somervaille L. J., Chettle D. R., Scott M. C., Tennant D. R., McKiernan M. J., Skilbeck A., Trethowan W. N. In vivo tibia lead measurements as an index of cumulative exposure in occupationally exposed subjects. Br J Ind Med. 1988 Mar;45(3):174–181. doi: 10.1136/oem.45.3.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tell I., Somervaille L. J., Nilsson U., Bensryd I., Schütz A., Chettle D. R., Scott M. C., Skerfving S. Chelated lead and bone lead. Scand J Work Environ Health. 1992 Apr;18(2):113–119. doi: 10.5271/sjweh.1603. [DOI] [PubMed] [Google Scholar]
  24. Thomas W. J., Collins T. M. Comparison of venipuncture blood counts with microcapillary measurements in screening for anemia in one-year-old infants. J Pediatr. 1982 Jul;101(1):32–35. doi: 10.1016/s0022-3476(82)80175-3. [DOI] [PubMed] [Google Scholar]
  25. Todd A. C. Calculating bone-lead measurement variance. Environ Health Perspect. 2000 May;108(5):383–386. doi: 10.1289/ehp.00108383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Todd A. C., Chettle D. R. In vivo X-ray fluorescence of lead in bone: review and current issues. Environ Health Perspect. 1994 Feb;102(2):172–177. doi: 10.1289/ehp.94102172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Todd A. C. Contamination of in vivo bone-lead measurements. Phys Med Biol. 2000 Jan;45(1):229–240. doi: 10.1088/0031-9155/45/1/316. [DOI] [PubMed] [Google Scholar]
  28. Todd A. C., McNeill F. E. In vivo measurements of lead in bone using a 109Cd 'spot' source. Basic Life Sci. 1993;60:299–302. doi: 10.1007/978-1-4899-1268-8_66. [DOI] [PubMed] [Google Scholar]
  29. Todd A. C., McNeill F. E., Palethorpe J. E., Peach D. E., Chettle D. R., Tobin M. J., Strosko S. J., Rosen J. C. In vivo X-ray fluorescence of lead in bone using K X-ray excitation with 109Cd sources: radiation dosimetry studies. Environ Res. 1992 Apr;57(2):117–132. doi: 10.1016/s0013-9351(05)80073-8. [DOI] [PubMed] [Google Scholar]
  30. Wittmers L. E., Jr, Aufderheide A. C., Wallgren J., Rapp G., Jr, Alich A. Lead in bone. IV. Distribution of lead in the human skeleton. Arch Environ Health. 1988 Nov-Dec;43(6):381–391. doi: 10.1080/00039896.1988.9935855. [DOI] [PubMed] [Google Scholar]

Articles from Occupational and Environmental Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES