Skip to main content
Occupational and Environmental Medicine logoLink to Occupational and Environmental Medicine
. 2001 Apr;58(4):239–245. doi: 10.1136/oem.58.4.239

Cross sectional and longitudinal study on selenium, glutathione peroxidase, smoking, and occupational exposure in coal miners

R Nadif 1, M Oryszczyn 1, M Fradier-Dusch 1, G Hellier 1, J Bertrand 1, Q Pham 1, F Kauffmann 1
PMCID: PMC1740122  PMID: 11245740

Abstract

OBJECTIVES—To understand the variations of selenium (Se) concentration relative to changes in occupational exposure to coal dust, taking into account age and changes in smoking habits in miners surveyed twice, in 1990 and 1994. To better understand the relation of Se concentration with glutathione peroxidase activities (GSH-Px) in these miners.
METHODS—In 1994, blood samples were obtained from active (n=131) and retired (n=40) miners without coal worker's pneumoconiosis, in whom Se concentration was available at both surveys and in whom International Labour Organisation (ILO) profusion grade had not been changed. Active miners were exposed to high dust concentrations (n=48) or low dust concentrations (n=83). Miners were classified into three subgroups according to their estimated cumulative exposure to dust, and into three subgroups according to their smoking habits.
RESULTS—Selenium concentration and GSH-Px activities were significantly lower in active than in retired miners (Se adjusted means: 62.6 v 72.2 ng/ml p=0.01). Moreover, Se concentration was lower in miners exposed to high compared with those exposed to low dust concentrations (adjusted means: 59.4 v 65.8). In miners exposed to high dust concentrations, Se concentration was significantly lower whereas erythrocyte GSH-Px activity was significantly higher in the subgroup with estimated cumulative exposure >68 mg/m3.y. In all miners, plasma GSH-Px activity was correlated with Se concentration (r=0.22, p<0.005). The 4 year Se changes were negatively related to exposure to high dust concentrations and positively related to change in exposure from high to retirement and to change from smoker to ex-smoker (p=0.01). 
CONCLUSION—The variations of Se concentration in relation to changes in occupational exposure to coal dust and in smoking habits, and the close correlation found between plasma Se concentration and GSH-Px activity suggest that both are required in antioxidant defence. These results agree well with the hypothesis that the decrease in Se concentration reflects its use against reactive oxygen species generated by exposure to coal mine dust and by smoking.


Keywords: antioxidant enzymes; coal miners; dust exposure; selenium; reactive oxygen species

Full Text

The Full Text of this article is available as a PDF (151.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agar N. S., Sadrzadeh S. M., Hallaway P. E., Eaton J. W. Erythrocyte catalase. A somatic oxidant defense? J Clin Invest. 1986 Jan;77(1):319–321. doi: 10.1172/JCI112294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akesson B., Bellew T., Burk R. F. Purification of selenoprotein P from human plasma. Biochim Biophys Acta. 1994 Feb 16;1204(2):243–249. doi: 10.1016/0167-4838(94)90014-0. [DOI] [PubMed] [Google Scholar]
  3. Attfield M. D., Morring K. The derivation of estimated dust exposures for U.S. coal miners working before 1970. Am Ind Hyg Assoc J. 1992 Apr;53(4):248–255. doi: 10.1080/15298669291359609. [DOI] [PubMed] [Google Scholar]
  4. Barregård L., Thomassen Y., Schütz A., Marklund S. L. Levels of selenium and antioxidative enzymes following occupational exposure to inorganic mercury. Sci Total Environ. 1990 Dec 1;99(1-2):37–47. doi: 10.1016/0048-9697(90)90208-c. [DOI] [PubMed] [Google Scholar]
  5. Berg I., Schlüter T., Gercken G. Increase of bovine alveolar macrophage superoxide anion and hydrogen peroxide release by dusts of different origin. J Toxicol Environ Health. 1993 Jul;39(3):341–354. doi: 10.1080/15287399309531756. [DOI] [PubMed] [Google Scholar]
  6. Berr C., Nicole A., Godin J., Ceballos-Picot I., Thevenin M., Dartigues J. F., Alperovitch A. Selenium and oxygen-metabolizing enzymes in elderly community residents: a pilot epidemiological study. J Am Geriatr Soc. 1993 Feb;41(2):143–148. doi: 10.1111/j.1532-5415.1993.tb02048.x. [DOI] [PubMed] [Google Scholar]
  7. Butler J. A., Thomson C. D., Whanger P. D., Robinson M. F. Selenium distribution in blood fractions of New Zealand women taking organic or inorganic selenium. Am J Clin Nutr. 1991 Mar;53(3):748–754. doi: 10.1093/ajcn/53.3.748. [DOI] [PubMed] [Google Scholar]
  8. Ceballos-Picot I., Merad-Boudia M., Nicole A., Thevenin M., Hellier G., Legrain S., Berr C. Peripheral antioxidant enzyme activities and selenium in elderly subjects and in dementia of Alzheimer's type--place of the extracellular glutathione peroxidase. Free Radic Biol Med. 1996;20(4):579–587. doi: 10.1016/0891-5849(95)02058-6. [DOI] [PubMed] [Google Scholar]
  9. Doelman C. J., Leurs R., Oosterom W. C., Bast A. Mineral dust exposure and free radical-mediated lung damage. Exp Lung Res. 1990 Jan;16(1):41–55. doi: 10.3109/01902149009064698. [DOI] [PubMed] [Google Scholar]
  10. Dubois F., Teby A., Belleville F., Nabet P., Paysant P. Valeurs usuelles du sélénium sérique dans une population de l'Est de la France. Ann Biol Clin (Paris) 1990;48(1):28–32. [PubMed] [Google Scholar]
  11. Gromadzińska J., Wasowicz W., Sklodowska M., Bulikowski W., Rydzyński K. The influence of atmospheric chromium on selenium content and glutathione peroxidase activity in blood of tannery workers. Environ Health Perspect. 1996 Dec;104(12):1312–1316. doi: 10.1289/ehp.104-1469531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koh T. S., Benson T. H. Critical re-appraisal of fluorometric method for determination of selenium in biological materials. J Assoc Off Anal Chem. 1983 Jul;66(4):918–926. [PubMed] [Google Scholar]
  13. Lloyd B., Lloyd R. S., Clayton B. E. Effect of smoking, alcohol, and other factors on the selenium status of a healthy population. J Epidemiol Community Health. 1983 Sep;37(3):213–217. doi: 10.1136/jech.37.3.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Malech H. L., Gallin J. I. Current concepts: immunology. Neutrophils in human diseases. N Engl J Med. 1987 Sep 10;317(11):687–694. doi: 10.1056/NEJM198709103171107. [DOI] [PubMed] [Google Scholar]
  15. Matsuda A., Kimura M., Itokawa Y. Selenium level and glutathione peroxidase activity in plasma, erythrocytes and platelets of healthy Japanese volunteers. J Nutr Sci Vitaminol (Tokyo) 1997 Oct;43(5):497–504. doi: 10.3177/jnsv.43.497. [DOI] [PubMed] [Google Scholar]
  16. Michelson A. M. Selenium glutathione peroxidase: some aspects in man. J Environ Pathol Toxicol Oncol. 1998;17(3-4):233–239. [PubMed] [Google Scholar]
  17. Minette A. Questionnaire of the European Community for Coal and Steel (ECSC) on respiratory symptoms. 1987--updating of the 1962 and 1967 questionnaires for studying chronic bronchitis and emphysema. Eur Respir J. 1989 Feb;2(2):165–177. [PubMed] [Google Scholar]
  18. Nadif R., Bourgkard E., Dusch M., Bernadac P., Bertrand J. P., Mur J. M., Pham Q. T. Relations between occupational exposure to coal mine dusts, erythrocyte catalase and Cu++/Zn++ superoxide dismutase activities, and the severity of coal workers' pneumoconiosis. Occup Environ Med. 1998 Aug;55(8):533–540. doi: 10.1136/oem.55.8.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Neve J., Vertongen F., Peretz A., Carpentier Y. A. Valeurs usuelles du sélénium et de la glutathion peroxydase dans une population belge. Ann Biol Clin (Paris) 1989;47(3):138–143. [PubMed] [Google Scholar]
  20. Nève J. Physiological and nutritional importance of selenium. Experientia. 1991 Feb 15;47(2):187–193. doi: 10.1007/BF01945424. [DOI] [PubMed] [Google Scholar]
  21. Oryszczyn M. P., Godin J., Frette C., Hellier G., Bertrand J. P., Pham Q. T., Kauffmann F. Decrease in selenium status in relation to coal dust exposure. Am J Ind Med. 1996 Sep;30(3):281–284. doi: 10.1002/(SICI)1097-0274(199609)30:3<281::AID-AJIM5>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  22. Paglia D. E., Valentine W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967 Jul;70(1):158–169. [PubMed] [Google Scholar]
  23. Perona G., Cellerino R., Guidi G. C., Moschini G., Stievano B. M., Tregnaghi C. Erythrocytic glutathione peroxidase: its relationship to plasma selenium in man. Scand J Haematol. 1977 Jul;19(1):116–120. doi: 10.1111/j.1600-0609.1977.tb02728.x. [DOI] [PubMed] [Google Scholar]
  24. Perrin R., Briançon S., Jeandel C., Artur Y., Minn A., Penin F., Siest G. Blood activity of Cu/Zn superoxide dismutase, glutathione peroxidase and catalase in Alzheimer's disease: a case-control study. Gerontology. 1990;36(5-6):306–313. doi: 10.1159/000213215. [DOI] [PubMed] [Google Scholar]
  25. Pham Q. T., Bourgkard E., Chau N., Willim G., Megherbi S. E., Teculescu D., Bohadana A., Bertrand J. P. Forced oscillation technique (FOT): a new tool for epidemiology of occupational lung diseases? Eur Respir J. 1995 Aug;8(8):1307–1313. doi: 10.1183/09031936.95.08081307. [DOI] [PubMed] [Google Scholar]
  26. Rea H. M., Thomson C. D., Campbell D. R., Robinson M. F. Relation between erythrocyte selenium concentrations and glutathione peroxidase (EC 1.11.1.9) activities of New Zealand residents and visitors to New Zealand. Br J Nutr. 1979 Sep;42(2):201–208. doi: 10.1079/bjn19790107. [DOI] [PubMed] [Google Scholar]
  27. Rebstock-Bourgkard E., Chau N., Caillier I., Ober M., Teculescu D., Mahieu B., Bertrand J. P., Pham Q. T. Symptômes et fonction respiratoires des mineurs de charbon présentant des anomalies radiologiques pulmonaires. Rev Epidemiol Sante Publique. 1994;42(6):533–541. [PubMed] [Google Scholar]
  28. Smith D. K., Teague R. J., McAdam P. A., Feldman D. S., Feldman E. B. Selenium status of malnourished hospitalized patients. J Am Coll Nutr. 1986;5(3):243–252. doi: 10.1080/07315724.1986.10720128. [DOI] [PubMed] [Google Scholar]
  29. Toth K. M., Clifford D. P., Berger E. M., White C. W., Repine J. E. Intact human erythrocytes prevent hydrogen peroxide-mediated damage to isolated perfused rat lungs and cultured bovine pulmonary artery endothelial cells. J Clin Invest. 1984 Jul;74(1):292–295. doi: 10.1172/JCI111414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wallaert B., Lassalle P., Fortin F., Aerts C., Bart F., Fournier E., Voisin C. Superoxide anion generation by alveolar inflammatory cells in simple pneumoconiosis and in progressive massive fibrosis of nonsmoking coal workers. Am Rev Respir Dis. 1990 Jan;141(1):129–133. doi: 10.1164/ajrccm/141.1.129. [DOI] [PubMed] [Google Scholar]
  31. Yoshida M., Sunaga M., Hara I. Selenium status in workers handling aromatic nitro-amino compounds in a chemical factory. J Toxicol Environ Health. 1990 Sep;31(1):1–10. doi: 10.1080/15287399009531433. [DOI] [PubMed] [Google Scholar]
  32. Zachara B. A., Wasowicz W., Sklodowska M., Gromadzinska J. Selenium status, lipid peroxides concentration, and glutathione peroxidase activity in the blood of power station and rubber factory workers. Arch Environ Health. 1987 Jul-Aug;42(4):223–229. [PubMed] [Google Scholar]

Articles from Occupational and Environmental Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES