Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Jun;64(6):1913–1917. doi: 10.1128/iai.64.6.1913-1917.1996

Substitution of cysteine 192 in a highly conserved Streptococcus pyogenes extracellular cysteine protease (interleukin 1beta convertase) alters proteolytic activity and ablates zymogen processing.

J M Musser 1, K Stockbauer 1, V Kapur 1, G W Rudgers 1
PMCID: PMC174016  PMID: 8675287

Abstract

Virtually all strains of the human pathogenic bacterium Streptococcus pyogenes express a highly conserved extracellular cysteine protease. The protein is made as an inactive zymogen of 40,000 Da and undergoes autocatalytic truncation to result in a 28,000-Da active protease. Numerous independent lines of investigation suggest that this enzyme participates in one or more phases of host-parasite interaction, such as inflammation and soft tissue invasion. Replacement of the single cysteine residue (C-192) with serine (C192S mutation) resulted in loss of detectable proteolytic activity against bovine casein, human fibronectin, and the low-molecular-weight synthetic substrate 7-amino-4-trifluoromethyl coumarin. The C192S mutant molecule does not undergo autocatalytic processing of zymogen to mature form. Taken together, these data support the hypothesis that C-192 participates in active-site formation and enzyme catalysis.

Full Text

The Full Text of this article is available as a PDF (313.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berge A., Björck L. Streptococcal cysteine proteinase releases biologically active fragments of streptococcal surface proteins. J Biol Chem. 1995 Apr 28;270(17):9862–9867. doi: 10.1074/jbc.270.17.9862. [DOI] [PubMed] [Google Scholar]
  2. Björck L., Akesson P., Bohus M., Trojnar J., Abrahamson M., Olafsson I., Grubb A. Bacterial growth blocked by a synthetic peptide based on the structure of a human proteinase inhibitor. Nature. 1989 Jan 26;337(6205):385–386. doi: 10.1038/337385a0. [DOI] [PubMed] [Google Scholar]
  3. Cheah K. C., Leong L. E., Porter A. G. Site-directed mutagenesis suggests close functional relationship between a human rhinovirus 3C cysteine protease and cellular trypsin-like serine proteases. J Biol Chem. 1990 May 5;265(13):7180–7187. [PubMed] [Google Scholar]
  4. Dufour E. Sequence homologies, hydrophobic profiles and secondary structures of cathepsins B, H and L: comparison with papain and actinidin. Biochimie. 1988 Oct;70(10):1335–1342. doi: 10.1016/0300-9084(88)90004-1. [DOI] [PubMed] [Google Scholar]
  5. ELLIOTT S. D. The crystallization and serological differentiation of a streptococcal proteinase and its precursor. J Exp Med. 1950 Sep;92(3):201–218. doi: 10.1084/jem.92.3.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eakin A. E., McGrath M. E., McKerrow J. H., Fletterick R. J., Craik C. S. Production of crystallizable cruzain, the major cysteine protease from Trypanosoma cruzi. J Biol Chem. 1993 Mar 25;268(9):6115–6118. [PubMed] [Google Scholar]
  7. Gerlach D., Knöll H., Köhler W., Ozegowski J. H., Hríbalova V. Isolation and characterization of erythrogenic toxins. V. Communication: identity of erythrogenic toxin type B and streptococcal proteinase precursor. Zentralbl Bakteriol Mikrobiol Hyg A. 1983 Sep;255(2-3):221–233. [PubMed] [Google Scholar]
  8. Gerwin B. I., Stein W. H., Moore S. On the specificity of streptococcal proteinase. J Biol Chem. 1966 Jul 25;241(14):3331–3339. [PubMed] [Google Scholar]
  9. Geysen H. M., Meloen R. H., Barteling S. J. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3998–4002. doi: 10.1073/pnas.81.13.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Geysen H. M., Rodda S. J., Mason T. J., Tribbick G., Schoofs P. G. Strategies for epitope analysis using peptide synthesis. J Immunol Methods. 1987 Sep 24;102(2):259–274. doi: 10.1016/0022-1759(87)90085-8. [DOI] [PubMed] [Google Scholar]
  11. Hauser A. R., Schlievert P. M. Nucleotide sequence of the streptococcal pyrogenic exotoxin type B gene and relationship between the toxin and the streptococcal proteinase precursor. J Bacteriol. 1990 Aug;172(8):4536–4542. doi: 10.1128/jb.172.8.4536-4542.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holm S. E., Norrby A., Bergholm A. M., Norgren M. Aspects of pathogenesis of serious group A streptococcal infections in Sweden, 1988-1989. J Infect Dis. 1992 Jul;166(1):31–37. doi: 10.1093/infdis/166.1.31. [DOI] [PubMed] [Google Scholar]
  13. Hämmerle T., Hellen C. U., Wimmer E. Site-directed mutagenesis of the putative catalytic triad of poliovirus 3C proteinase. J Biol Chem. 1991 Mar 25;266(9):5412–5416. [PubMed] [Google Scholar]
  14. Imamura T., Pike R. N., Potempa J., Travis J. Pathogenesis of periodontitis: a major arginine-specific cysteine proteinase from Porphyromonas gingivalis induces vascular permeability enhancement through activation of the kallikrein/kinin pathway. J Clin Invest. 1994 Jul;94(1):361–367. doi: 10.1172/JCI117330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Imamura T., Potempa J., Pike R. N., Travis J. Dependence of vascular permeability enhancement on cysteine proteinases in vesicles of Porphyromonas gingivalis. Infect Immun. 1995 May;63(5):1999–2003. doi: 10.1128/iai.63.5.1999-2003.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ivanoff L. A., Towatari T., Ray J., Korant B. D., Petteway S. R., Jr Expression and site-specific mutagenesis of the poliovirus 3C protease in Escherichia coli. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5392–5396. doi: 10.1073/pnas.83.15.5392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jameson B. A., Wolf H. The antigenic index: a novel algorithm for predicting antigenic determinants. Comput Appl Biosci. 1988 Mar;4(1):181–186. doi: 10.1093/bioinformatics/4.1.181. [DOI] [PubMed] [Google Scholar]
  18. KELLNER A., ROBERTSON T. Myocardial necrosis produced in animals by means of crystalline streptococcal proteinase. J Exp Med. 1954 May 1;99(5):495–503. doi: 10.1084/jem.99.5.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kamphuis I. G., Kalk K. H., Swarte M. B., Drenth J. Structure of papain refined at 1.65 A resolution. J Mol Biol. 1984 Oct 25;179(2):233–256. doi: 10.1016/0022-2836(84)90467-4. [DOI] [PubMed] [Google Scholar]
  20. Kapur V., Maffei J. T., Greer R. S., Li L. L., Adams G. J., Musser J. M. Vaccination with streptococcal extracellular cysteine protease (interleukin-1 beta convertase) protects mice against challenge with heterologous group A streptococci. Microb Pathog. 1994 Jun;16(6):443–450. doi: 10.1006/mpat.1994.1044. [DOI] [PubMed] [Google Scholar]
  21. Kapur V., Majesky M. W., Li L. L., Black R. A., Musser J. M. Cleavage of interleukin 1 beta (IL-1 beta) precursor to produce active IL-1 beta by a conserved extracellular cysteine protease from Streptococcus pyogenes. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7676–7680. doi: 10.1073/pnas.90.16.7676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kapur V., Topouzis S., Majesky M. W., Li L. L., Hamrick M. R., Hamill R. J., Patti J. M., Musser J. M. A conserved Streptococcus pyogenes extracellular cysteine protease cleaves human fibronectin and degrades vitronectin. Microb Pathog. 1993 Nov;15(5):327–346. doi: 10.1006/mpat.1993.1083. [DOI] [PubMed] [Google Scholar]
  23. Karrer K. M., Peiffer S. L., DiTomas M. E. Two distinct gene subfamilies within the family of cysteine protease genes. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3063–3067. doi: 10.1073/pnas.90.7.3063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kortt A. A., Liu T. Y. On the mechanism of action of streptococcal proteinase. I. Active-site titration. Biochemistry. 1973 Jan 16;12(2):320–327. doi: 10.1021/bi00726a023. [DOI] [PubMed] [Google Scholar]
  25. LIU T. Y., ELLIOTT S. D. STREPTOCOCCAL PROTEINASE: THE ZYMOGEN TO ENZYME TRANSFROMATION. J Biol Chem. 1965 Mar;240:1138–1142. [PubMed] [Google Scholar]
  26. LIU T. Y., NEUMANN N. P., ELLIOTT S. D., MOORE S., STEIN W. H. Chemical properties of streptococcal proteinase and its zymogen. J Biol Chem. 1963 Jan;238:251–256. [PubMed] [Google Scholar]
  27. LIU T. Y., STEIN W. H., MOORE S., ELLIOTT S. D. THE SEQUENCE OF AMINO ACID RESIDUES AROUND THE SULFHYDRYL GROUP AT THE ACTIVE SITE OF STREPTOCOCCAL PROTEINASE. J Biol Chem. 1965 Mar;240:1143–1149. [PubMed] [Google Scholar]
  28. Li E., Yang W. G., Zhang T., Stanley S. L., Jr Interaction of laminin with Entamoeba histolytica cysteine proteinases and its effect on amebic pathogenesis. Infect Immun. 1995 Oct;63(10):4150–4153. doi: 10.1128/iai.63.10.4150-4153.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Liu T. Y. Demonstration of the presence of a histidine residue at the active site of streptococcal proteinase. J Biol Chem. 1967 Sep 25;242(18):4029–4032. [PubMed] [Google Scholar]
  30. Martinez J., Campetella O., Frasch A. C., Cazzulo J. J. The major cysteine proteinase (cruzipain) from Trypanosoma cruzi is antigenic in human infections. Infect Immun. 1991 Nov;59(11):4275–4277. doi: 10.1128/iai.59.11.4275-4277.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McKerrow J. H., McGrath M. E., Engel J. C. The cysteine protease of Trypanosoma cruzi as a model for antiparasite drug design. Parasitol Today. 1995 Aug;11(8):279–282. doi: 10.1016/0169-4758(95)80039-5. [DOI] [PubMed] [Google Scholar]
  32. McKerrow J. H., Sun E., Rosenthal P. J., Bouvier J. The proteases and pathogenicity of parasitic protozoa. Annu Rev Microbiol. 1993;47:821–853. doi: 10.1146/annurev.mi.47.100193.004133. [DOI] [PubMed] [Google Scholar]
  33. Musser J. M., Hauser A. R., Kim M. H., Schlievert P. M., Nelson K., Selander R. K. Streptococcus pyogenes causing toxic-shock-like syndrome and other invasive diseases: clonal diversity and pyrogenic exotoxin expression. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2668–2672. doi: 10.1073/pnas.88.7.2668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Reed S. L., Keene W. E., McKerrow J. H. Thiol proteinase expression and pathogenicity of Entamoeba histolytica. J Clin Microbiol. 1989 Dec;27(12):2772–2777. doi: 10.1128/jcm.27.12.2772-2777.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Robinson G. W. Reaction of a specific tryptophan residue in streptococcal proteinase with 2-hydroxy-5-nitrobenzyl bromide. J Biol Chem. 1970 Sep 25;245(18):4832–4841. [PubMed] [Google Scholar]
  36. Shanley T. P., Schrier D., Kapur V., Kehoe M., Musser J. M., Ward P. A. Streptococcal cysteine protease augments lung injury induced by products of group A streptococci. Infect Immun. 1996 Mar;64(3):870–877. doi: 10.1128/iai.64.3.870-877.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stanley S. L., Jr, Zhang T., Rubin D., Li E. Role of the Entamoeba histolytica cysteine proteinase in amebic liver abscess formation in severe combined immunodeficient mice. Infect Immun. 1995 Apr;63(4):1587–1590. doi: 10.1128/iai.63.4.1587-1590.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tai J. Y., Kortt A. A., Liu T. Y., Elliott S. D. Primary structure of streptococcal proteinase. III. Isolation of cyanogen bromide peptides: complete covalent structure of the polypeptide chain. J Biol Chem. 1976 Apr 10;251(7):1955–1959. [PubMed] [Google Scholar]
  39. Vernet T., Khouri H. E., Laflamme P., Tessier D. C., Musil R., Gour-Salin B. J., Storer A. C., Thomas D. Y. Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing. J Biol Chem. 1991 Nov 15;266(32):21451–21457. [PubMed] [Google Scholar]
  40. Wandersman C. Secretion, processing and activation of bacterial extracellular proteases. Mol Microbiol. 1989 Dec;3(12):1825–1831. doi: 10.1111/j.1365-2958.1989.tb00169.x. [DOI] [PubMed] [Google Scholar]
  41. Wolf B. B., Gibson C. A., Kapur V., Hussaini I. M., Musser J. M., Gonias S. L. Proteolytically active streptococcal pyrogenic exotoxin B cleaves monocytic cell urokinase receptor and releases an active fragment of the receptor from the cell surface. J Biol Chem. 1994 Dec 2;269(48):30682–30687. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES