Abstract
OBJECTIVES—To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. METHODS—Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NOx) were measured by a chemiluminescent ML9841A NOx analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. RESULTS—High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NOX were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. CONCLUSIONS—Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NOx might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable. Keywords: cooking fuels; nitrogen oxides; ultrafine particles
Full Text
The Full Text of this article is available as a PDF (155.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abt E., Suh H. H., Allen G., Koutrakis P. Characterization of indoor particle sources: A study conducted in the metropolitan Boston area. Environ Health Perspect. 2000 Jan;108(1):35–44. doi: 10.1289/ehp.0010835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson H. R., Ponce de Leon A., Bland J. M., Bower J. S., Emberlin J., Strachan D. P. Air pollution, pollens, and daily admissions for asthma in London 1987-92. Thorax. 1998 Oct;53(10):842–848. doi: 10.1136/thx.53.10.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiang T. A., Wu P. F., Ko Y. C. Identification of carcinogens in cooking oil fumes. Environ Res. 1999 Jul;81(1):18–22. doi: 10.1006/enrs.1998.3876. [DOI] [PubMed] [Google Scholar]
- Cyrys J., Heinrich J., Richter K., Wölke G., Wichmann H. E. Sources and concentrations of indoor nitrogen dioxide in Hamburg (west Germany) and Erfurt (east Germany). Sci Total Environ. 2000 Apr 24;250(1-3):51–62. doi: 10.1016/s0048-9697(00)00361-2. [DOI] [PubMed] [Google Scholar]
- Dick C. A., Dennekamp M., Howarth S., Cherrie J. W., Seaton A., Donaldson K., Stone V. Stimulation of IL-8 release from epithelial cells by gas cooker PM(10): a pilot study. Occup Environ Med. 2001 Mar;58(3):208–210. doi: 10.1136/oem.58.3.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dockery D. W., Pope C. A., 3rd Acute respiratory effects of particulate air pollution. Annu Rev Public Health. 1994;15:107–132. doi: 10.1146/annurev.pu.15.050194.000543. [DOI] [PubMed] [Google Scholar]
- Farrow A., Greenwood R., Preece S., Golding J. Nitrogen dioxide, the oxides of nitrogen, and infants' health symptoms. ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. Arch Environ Health. 1997 May-Jun;52(3):189–194. doi: 10.1080/00039899709602885. [DOI] [PubMed] [Google Scholar]
- Ferin J., Oberdörster G., Penney D. P. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol. 1992 May;6(5):535–542. doi: 10.1165/ajrcmb/6.5.535. [DOI] [PubMed] [Google Scholar]
- Gao Y. T., Blot W. J., Zheng W., Ershow A. G., Hsu C. W., Levin L. I., Zhang R., Fraumeni J. F., Jr Lung cancer among Chinese women. Int J Cancer. 1987 Nov 15;40(5):604–609. doi: 10.1002/ijc.2910400505. [DOI] [PubMed] [Google Scholar]
- Garrett M. H., Hooper M. A., Hooper B. M., Abramson M. J. Respiratory symptoms in children and indoor exposure to nitrogen dioxide and gas stoves. Am J Respir Crit Care Med. 1998 Sep;158(3):891–895. doi: 10.1164/ajrccm.158.3.9701084. [DOI] [PubMed] [Google Scholar]
- Hajat S., Haines A., Goubet S. A., Atkinson R. W., Anderson H. R. Association of air pollution with daily GP consultations for asthma and other lower respiratory conditions in London. Thorax. 1999 Jul;54(7):597–605. doi: 10.1136/thx.54.7.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarvis D., Chinn S., Luczynska C., Burney P. Association of respiratory symptoms and lung function in young adults with use of domestic gas appliances. Lancet. 1996 Feb 17;347(8999):426–431. doi: 10.1016/s0140-6736(96)90009-4. [DOI] [PubMed] [Google Scholar]
- Jarvis D., Chinn S., Sterne J., Luczynska C., Burney P. The association of respiratory symptoms and lung function with the use of gas for cooking. European Community Respiratory Health Survey. Eur Respir J. 1998 Mar;11(3):651–658. [PubMed] [Google Scholar]
- Ko Y. C., Cheng L. S., Lee C. H., Huang J. J., Huang M. S., Kao E. L., Wang H. Z., Lin H. J. Chinese food cooking and lung cancer in women nonsmokers. Am J Epidemiol. 2000 Jan 15;151(2):140–147. doi: 10.1093/oxfordjournals.aje.a010181. [DOI] [PubMed] [Google Scholar]
- Ko Y. C., Lee C. H., Chen M. J., Huang C. C., Chang W. Y., Lin H. J., Wang H. Z., Chang P. Y. Risk factors for primary lung cancer among non-smoking women in Taiwan. Int J Epidemiol. 1997 Feb;26(1):24–31. doi: 10.1093/ije/26.1.24. [DOI] [PubMed] [Google Scholar]
- Levy J. I., Lee K., Spengler J. D., Yanagisawa Y. Impact of residential nitrogen dioxide exposure on personal exposure: an international study. J Air Waste Manag Assoc. 1998 Jun;48(6):553–560. doi: 10.1080/10473289.1998.10463704. [DOI] [PubMed] [Google Scholar]
- Li S., Pan D., Wang G. Analysis of polycyclic aromatic hydrocarbons in cooking oil fumes. Arch Environ Health. 1994 Mar-Apr;49(2):119–122. doi: 10.1080/00039896.1994.9937464. [DOI] [PubMed] [Google Scholar]
- Melia R. J., Florey C. D., Altman D. G., Swan A. V. Association between gas cooking and respiratory disease in children. Br Med J. 1977 Jul 16;2(6080):149–152. doi: 10.1136/bmj.2.6080.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osunsanya T., Prescott G., Seaton A. Acute respiratory effects of particles: mass or number? Occup Environ Med. 2001 Mar;58(3):154–159. doi: 10.1136/oem.58.3.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozkaynak H., Xue J., Spengler J., Wallace L., Pellizzari E., Jenkins P. Personal exposure to airborne particles and metals: results from the Particle TEAM study in Riverside, California. J Expo Anal Environ Epidemiol. 1996 Jan-Mar;6(1):57–78. [PubMed] [Google Scholar]
- Pekkanen J., Timonen K. L., Ruuskanen J., Reponen A., Mirme A. Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environ Res. 1997;74(1):24–33. doi: 10.1006/enrs.1997.3750. [DOI] [PubMed] [Google Scholar]
- Peters A., Liu E., Verrier R. L., Schwartz J., Gold D. R., Mittleman M., Baliff J., Oh J. A., Allen G., Monahan K. Air pollution and incidence of cardiac arrhythmia. Epidemiology. 2000 Jan;11(1):11–17. doi: 10.1097/00001648-200001000-00005. [DOI] [PubMed] [Google Scholar]
- Peters A., Wichmann H. E., Tuch T., Heinrich J., Heyder J. Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med. 1997 Apr;155(4):1376–1383. doi: 10.1164/ajrccm.155.4.9105082. [DOI] [PubMed] [Google Scholar]
- Pilotto L. S., Douglas R. M., Attewell R. G., Wilson S. R. Respiratory effects associated with indoor nitrogen dioxide exposure in children. Int J Epidemiol. 1997 Aug;26(4):788–796. doi: 10.1093/ije/26.4.788. [DOI] [PubMed] [Google Scholar]
- Pope C. A., 3rd, Dockery D. W. Acute health effects of PM10 pollution on symptomatic and asymptomatic children. Am Rev Respir Dis. 1992 May;145(5):1123–1128. doi: 10.1164/ajrccm/145.5.1123. [DOI] [PubMed] [Google Scholar]
- Pope C. A., 3rd, Dockery D. W., Spengler J. D., Raizenne M. E. Respiratory health and PM10 pollution. A daily time series analysis. Am Rev Respir Dis. 1991 Sep;144(3 Pt 1):668–674. doi: 10.1164/ajrccm/144.3_Pt_1.668. [DOI] [PubMed] [Google Scholar]
- Schwartz J., Slater D., Larson T. V., Pierson W. E., Koenig J. Q. Particulate air pollution and hospital emergency room visits for asthma in Seattle. Am Rev Respir Dis. 1993 Apr;147(4):826–831. doi: 10.1164/ajrccm/147.4.826. [DOI] [PubMed] [Google Scholar]
- Seaton A., MacNee W., Donaldson K., Godden D. Particulate air pollution and acute health effects. Lancet. 1995 Jan 21;345(8943):176–178. doi: 10.1016/s0140-6736(95)90173-6. [DOI] [PubMed] [Google Scholar]
- Speizer F. E., Ferris B., Jr, Bishop Y. M., Spengler J. Respiratory disease rates and pulmonary function in children associated with NO2 exposure. Am Rev Respir Dis. 1980 Jan;121(1):3–10. doi: 10.1164/arrd.1980.121.1.3. [DOI] [PubMed] [Google Scholar]
- Spengler J., Schwab M., Ryan P. B., Colome S., Wilson A. L., Billick I., Becker E. Personal exposure to nitrogen dioxide in the Los Angeles Basin. Air Waste. 1994 Jan;44(1):39–47. doi: 10.1080/1073161x.1994.10467236. [DOI] [PubMed] [Google Scholar]
- Strand V., Rak S., Svartengren M., Bylin G. Nitrogen dioxide exposure enhances asthmatic reaction to inhaled allergen in subjects with asthma. Am J Respir Crit Care Med. 1997 Mar;155(3):881–887. doi: 10.1164/ajrccm.155.3.9117021. [DOI] [PubMed] [Google Scholar]
- Touloumi G., Katsouyanni K., Zmirou D., Schwartz J., Spix C., de Leon A. P., Tobias A., Quennel P., Rabczenko D., Bacharova L. Short-term effects of ambient oxidant exposure on mortality: a combined analysis within the APHEA project. Air Pollution and Health: a European Approach. Am J Epidemiol. 1997 Jul 15;146(2):177–185. doi: 10.1093/oxfordjournals.aje.a009249. [DOI] [PubMed] [Google Scholar]
- Tunnicliffe W. S., Burge P. S., Ayres J. G. Effect of domestic concentrations of nitrogen dioxide on airway responses to inhaled allergen in asthmatic patients. Lancet. 1994 Dec 24;344(8939-8940):1733–1736. doi: 10.1016/s0140-6736(94)92886-x. [DOI] [PubMed] [Google Scholar]
- Volkmer R. E., Ruffin R. E., Wigg N. R., Davies N. The prevalence of respiratory symptoms in South Australian preschool children. II. Factors associated with indoor air quality. J Paediatr Child Health. 1995 Apr;31(2):116–120. doi: 10.1111/j.1440-1754.1995.tb00758.x. [DOI] [PubMed] [Google Scholar]
- Wallace L. Real-time monitoring of particles, PAH, and CO in an occupied townhouse. Appl Occup Environ Hyg. 2000 Jan;15(1):39–47. doi: 10.1080/104732200301836. [DOI] [PubMed] [Google Scholar]
- Ware J. H., Dockery D. W., Spiro A., 3rd, Speizer F. E., Ferris B. G., Jr Passive smoking, gas cooking, and respiratory health of children living in six cities. Am Rev Respir Dis. 1984 Mar;129(3):366–374. doi: 10.1164/arrd.1984.129.3.366. [DOI] [PubMed] [Google Scholar]
- Warheit D. B., Seidel W. C., Carakostas M. C., Hartsky M. A. Attenuation of perfluoropolymer fume pulmonary toxicity: effect of filters, combustion method, and aerosol age. Exp Mol Pathol. 1990 Jun;52(3):309–329. doi: 10.1016/0014-4800(90)90072-l. [DOI] [PubMed] [Google Scholar]
- Wu P. F., Chiang T. A., Ko Y. C., Lee H. Genotoxicity of fumes from heated cooking oils produced in Taiwan. Environ Res. 1999 Feb;80(2 Pt 1):122–126. doi: 10.1006/enrs.1997.3798. [DOI] [PubMed] [Google Scholar]