Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Infection and Immunity logoLink to Infection and Immunity
. 1996 Jun;64(6):1977–1983. doi: 10.1128/iai.64.6.1977-1983.1996

The second capsule gene of cryptococcus neoformans, CAP64, is essential for virulence.

Y C Chang 1, L A Penoyer 1, K J Kwon-Chung 1
PMCID: PMC174025  PMID: 8675296

Abstract

The extracellular polysaccharide capsule produced by Cryptococcus neoformans is essential for its pathogenicity. We have isolated and characterized a gene, (AP64, which is required for capsule formation. An encapsulated strain created by complementation of the cap64 mutation produced fatal infection of mice within 25 days, while the cap64 acapsular strain was avirulent. Gene deletion of CAP64 from a wild-type strain resulted in the loss of capsule as well as virulence. Contour-clamped homogeneous electric field gel analysis indicates that CAP64 is located on chromosome III which is different from the localization of another capsule-related gene, CAP59. The nonlinkage between CAP64 and CAP59 was also supported by classical recombinational analysis. Database searches did not reveal any sequence with high similarity to CAP64. We also found that the CAP64 locus is contiguous to a convergently transcribed gene which has significant similarity to the gene encoding the yeast proteasome subunit, PRE1. The distance between the cDNA ends of these two genes is only 22 bp. This study confirms the previous molecular genetic evidence that capsule is an essential factor for the virulence of C. neoformans in the murine model.

Full Text

The Full Text of this article is available as a PDF (729.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhattacharjee A. K., Bennett J. E., Glaudemans C. P. Capsular polysaccharides of Cryptococcus neoformans. Rev Infect Dis. 1984 Sep-Oct;6(5):619–624. doi: 10.1093/clinids/6.5.619. [DOI] [PubMed] [Google Scholar]
  2. Bhattacharjee A. K., Kwon-Chung K. J., Glaudemans C. P. Capsular polysaccharides from a parent strain and from a possible, mutant strain of Cryptococcus neoformans serotype A. Carbohydr Res. 1981 Sep 16;95(2):237–248. doi: 10.1016/s0008-6215(00)85580-9. [DOI] [PubMed] [Google Scholar]
  3. Bhattacharjee A. K., Kwon-Chung K. J., Glaudemans C. P. On the structure of the capsular polysaccharide from Cryptococcus neoformans serotype C--II. Mol Immunol. 1979 Jul;16(7):531–532. doi: 10.1016/0161-5890(79)90081-6. [DOI] [PubMed] [Google Scholar]
  4. Bhattacharjee A. K., Kwon-Chung K. J., Glaudemans C. P. The major capsular polysaccharide of Cryptococcus neoformans serotype B. Carbohydr Res. 1992 Sep 2;233:271–272. doi: 10.1016/s0008-6215(00)90942-x. [DOI] [PubMed] [Google Scholar]
  5. Chang Y. C., Kwon-Chung K. J. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol. 1994 Jul;14(7):4912–4919. doi: 10.1128/mcb.14.7.4912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang Y. C., Wickes B. L., Kwon-Chung K. J. Further analysis of the CAP59 locus of Cryptococcus neoformans: structure defined by forced expression and description of a new ribosomal protein-encoding gene. Gene. 1995 Dec 29;167(1-2):179–183. doi: 10.1016/0378-1119(95)00640-0. [DOI] [PubMed] [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Driscoll J. The role of the proteasome in cellular protein degradation. Histol Histopathol. 1994 Jan;9(1):197–202. [PubMed] [Google Scholar]
  9. Edman J. C., Kwon-Chung K. J. Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation. Mol Cell Biol. 1990 Sep;10(9):4538–4544. doi: 10.1128/mcb.10.9.4538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  11. Fromtling R. A., Shadomy H. J., Jacobson E. S. Decreased virulence in stable, acapsular mutants of cryptococcus neoformans. Mycopathologia. 1982 Jul 23;79(1):23–29. doi: 10.1007/BF00636177. [DOI] [PubMed] [Google Scholar]
  12. Heinemeyer W., Kleinschmidt J. A., Saidowsky J., Escher C., Wolf D. H. Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J. 1991 Mar;10(3):555–562. doi: 10.1002/j.1460-2075.1991.tb07982.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jacobson E. S., Payne W. R. UDP glucuronate decarboxylase and synthesis of capsular polysaccharide in Cryptococcus neoformans. J Bacteriol. 1982 Nov;152(2):932–934. doi: 10.1128/jb.152.2.932-934.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kwon-Chung K. J., Bennett J. E., Rhodes J. C. Taxonomic studies on Filobasidiella species and their anamorphs. Antonie Van Leeuwenhoek. 1982;48(1):25–38. doi: 10.1007/BF00399484. [DOI] [PubMed] [Google Scholar]
  15. Kwon-Chung K. J., Edman J. C., Wickes B. L. Genetic association of mating types and virulence in Cryptococcus neoformans. Infect Immun. 1992 Feb;60(2):602–605. doi: 10.1128/iai.60.2.602-605.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kwon-Chung K. J. Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia. 1976 Jul-Aug;68(4):821–833. [PubMed] [Google Scholar]
  17. Kwon-Chung K. J., Rhodes J. C. Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun. 1986 Jan;51(1):218–223. doi: 10.1128/iai.51.1.218-223.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kwon-Chung K. J., Varma A., Edman J. C., Bennett J. E. Selection of ura5 and ura3 mutants from the two varieties of Cryptococcus neoformans on 5-fluoroorotic acid medium. J Med Vet Mycol. 1992;30(1):61–69. [PubMed] [Google Scholar]
  19. Nishimura C., Tamura T., Tokunaga F., Tanaka K., Ichihara A. cDNA cloning of rat proteasome subunit RC7-I, a homologue of yeast PRE1 essential for chymotrypsin-like activity. FEBS Lett. 1993 Oct 11;332(1-2):52–56. doi: 10.1016/0014-5793(93)80482-a. [DOI] [PubMed] [Google Scholar]
  20. Rivett A. J. Proteasomes: multicatalytic proteinase complexes. Biochem J. 1993 Apr 1;291(Pt 1):1–10. doi: 10.1042/bj2910001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Still C. N., Jacobson E. S. Recombinational mapping of capsule mutations in Cryptococcus neoformans. J Bacteriol. 1983 Oct;156(1):460–462. doi: 10.1128/jb.156.1.460-462.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tanaka K., Tamura T., Yoshimura T., Ichihara A. Proteasomes: protein and gene structures. New Biol. 1992 Mar;4(3):173–187. [PubMed] [Google Scholar]
  23. Turner S. H., Cherniak R., Reiss E., Kwon-Chung K. J. Structural variability in the glucuronoxylomannan of Cryptococcus neoformans serotype A isolates determined by 13C NMR spectroscopy. Carbohydr Res. 1992 Sep 2;233:205–218. doi: 10.1016/s0008-6215(00)90932-7. [DOI] [PubMed] [Google Scholar]
  24. Varma A., Edman J. C., Kwon-Chung K. J. Molecular and genetic analysis of URA5 transformants of Cryptococcus neoformans. Infect Immun. 1992 Mar;60(3):1101–1108. doi: 10.1128/iai.60.3.1101-1108.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. White C. W., Cherniak R., Jacobson E. S. Side group addition by xylosyltransferase and glucuronyltransferase in biosynthesis of capsular polysaccharide in Cryptococcus neoformans. J Med Vet Mycol. 1990;28(4):289–301. doi: 10.1080/02681219080000381. [DOI] [PubMed] [Google Scholar]
  26. Zwickl P., Grziwa A., Pühler G., Dahlmann B., Lottspeich F., Baumeister W. Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry. 1992 Feb 4;31(4):964–972. doi: 10.1021/bi00119a004. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES