Skip to main content
Occupational and Environmental Medicine logoLink to Occupational and Environmental Medicine
. 2002 Apr;59(4):234–242. doi: 10.1136/oem.59.4.234

Sperm count and chromatin structure in men exposed to inorganic lead: lowest adverse effect levels

J Bonde 1, M Joffe 1, P Apostoli 1, A Dale 1, P Kiss 1, M Spano 1, F Caruso 1, A Giwercman 1, L Bisanti 1, S Porru 1, M Vanhoorne 1, F Comhaire 1, W Zschiesche 1
PMCID: PMC1740274  PMID: 11934950

Abstract

Objectives: To obtain knowledge on male reproductive toxicity of inorganic lead at current European exposure levels and to establish lowest adverse effect levels, if any.

Methods: A cross sectional survey of the semen of 503 men employed by 10 companies was conducted in the United Kingdom, Italy, and Belgium. The mean blood lead concentration was 31.0 µg/dl (range 4.6–64.5) in 362 workers exposed to lead and 4.4 µg/dl (range below the detection limit of 19.8) in 141 reference workers. Semen volume and sperm concentration were determined in a fresh semen sample according to an agreed protocol subject to quality assurance. The sperm chromatin structure assay (SCSA) was performed at a centralised laboratory. Extraneous determinants including centre, period of sexual abstinence, and age were taken into account in the statistical analysis. If appropriate, possible thresholds were examined by iterative threshold slope linear regression.

Results: The median sperm concentration was reduced by 49% in men with blood lead concentration above 50 µg/dl. There was no indication of a linear trend of lower sperm concentration with increasing blood lead values, but threshold slope least square regression identified a blood lead concentration of 44 µg/dl (ß=-0.037, F=4.35, p=0.038) as a likely threshold. Abnormal sperm chromatin structure was not related to blood lead concentration, but some indications of deterioration of sperm chromatin was found in men with the highest concentrations of lead within spermatozoa. Biological monitoring data did not indicate long term effects of lead on semen quantity or sperm chromatin.

Conclusion: Adverse effects of lead on sperm concentration and susceptibility to acid induced denaturation of sperm chromatin are unlikely at blood lead concentrations below 45 µg/dl. Effects of low level exposure to lead on other measures of testicular function cannot be ruled out.

Full Text

The Full Text of this article is available as a PDF (217.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander B. H., Checkoway H., Costa-Mallen P., Faustman E. M., Woods J. S., Kelsey K. T., van Netten C., Costa L. G. Interaction of blood lead and delta-aminolevulinic acid dehydratase genotype on markers of heme synthesis and sperm production in lead smelter workers. Environ Health Perspect. 1998 Apr;106(4):213–216. doi: 10.1289/ehp.98106213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alexander B. H., Checkoway H., van Netten C., Muller C. H., Ewers T. G., Kaufman J. D., Mueller B. A., Vaughan T. L., Faustman E. M. Semen quality of men employed at a lead smelter. Occup Environ Med. 1996 Jun;53(6):411–416. doi: 10.1136/oem.53.6.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Apostoli P., Kiss P., Porru S., Bonde J. P., Vanhoorne M. Male reproductive toxicity of lead in animals and humans. ASCLEPIOS Study Group. Occup Environ Med. 1998 Jun;55(6):364–374. doi: 10.1136/oem.55.6.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Apostoli P., Porru S., Bisanti L. Critical aspects of male fertility in the assessment of exposure to lead. Scand J Work Environ Health. 1999;25 (Suppl 1):40–43. [PubMed] [Google Scholar]
  5. Apostoli P., Porru S., Morandi C., Menditto A. Multiple determination of elements in human seminal plasma and spermatozoa. J Trace Elem Med Biol. 1997 Nov;11(3):182–184. doi: 10.1016/S0946-672X(97)80052-1. [DOI] [PubMed] [Google Scholar]
  6. Aravindan G. R., Bjordahl J., Jost L. K., Evenson D. P. Susceptibility of human sperm to in situ DNA denaturation is strongly correlated with DNA strand breaks identified by single-cell electrophoresis. Exp Cell Res. 1997 Oct 10;236(1):231–237. doi: 10.1006/excr.1997.3719. [DOI] [PubMed] [Google Scholar]
  7. Assennato G., Paci C., Baser M. E., Molinini R., Candela R. G., Altamura B. M., Giorgino R. Sperm count suppression without endocrine dysfunction in lead-exposed men. Arch Environ Health. 1986 Nov-Dec;41(6):387–390. doi: 10.1080/00039896.1986.9935784. [DOI] [PubMed] [Google Scholar]
  8. Bonde J. P., Ernst E., Jensen T. K., Hjollund N. H., Kolstad H., Henriksen T. B., Scheike T., Giwercman A., Olsen J., Skakkebaek N. E. Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners. Lancet. 1998 Oct 10;352(9135):1172–1177. doi: 10.1016/S0140-6736(97)10514-1. [DOI] [PubMed] [Google Scholar]
  9. Bonde J. P., Giwercman A., Ernst E. Identifying environmental risk to male reproductive function by occupational sperm studies: logistics and design options. Occup Environ Med. 1996 Aug;53(8):511–519. doi: 10.1136/oem.53.8.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bonde J. P., Joffe M., Danscher G., Apostoli P., Bisanti L., Giwercman A., Kolstad H. A., Thonneau P., Roeleveld N., Vanhoorne M. Objectives, designs and populations of the European Asclepios study on occupational hazards to male reproductive capability. Scand J Work Environ Health. 1999;25 (Suppl 1):49–78. [PubMed] [Google Scholar]
  11. Evenson D. P., Jost L. K., Baer R. K., Turner T. W., Schrader S. M. Individuality of DNA denaturation patterns in human sperm as measured by the sperm chromatin structure assay. Reprod Toxicol. 1991;5(2):115–125. doi: 10.1016/0890-6238(91)90039-i. [DOI] [PubMed] [Google Scholar]
  12. Foster W. G., McMahon A., Rice D. C. Sperm chromatin structure is altered in cynomolgus monkeys with environmentally relevant blood lead levels. Toxicol Ind Health. 1996 Sep-Oct;12(5):723–735. doi: 10.1177/074823379601200509. [DOI] [PubMed] [Google Scholar]
  13. Giwercman A., Spano M., Lähdetie J., Bonde J. P. Quality assurance of semen analysis in multicenter studies. Asclepios. Scand J Work Environ Health. 1999;25 (Suppl 1):23–78. [PubMed] [Google Scholar]
  14. Kim R., Landrigan C., Mossmann P., Sparrow D., Hu H. Age and secular trends in bone lead levels in middle-aged and elderly men: three-year longitudinal follow-up in the Normative Aging Study. Am J Epidemiol. 1997 Oct 1;146(7):586–591. doi: 10.1093/oxfordjournals.aje.a009318. [DOI] [PubMed] [Google Scholar]
  15. Lancranjan I., Popescu H. I., GAvănescu O., Klepsch I., Serbănescu M. Reproductive ability of workmen occupationally exposed to lead. Arch Environ Health. 1975 Aug;30(8):396–401. doi: 10.1080/00039896.1975.10666733. [DOI] [PubMed] [Google Scholar]
  16. Landrigan P. J., Boffetta P., Apostoli P. The reproductive toxicity and carcinogenicity of lead: a critical review. Am J Ind Med. 2000 Sep;38(3):231–243. doi: 10.1002/1097-0274(200009)38:3<231::aid-ajim2>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  17. Larsen S. B., Abell A., Bonde J. P. Selection bias in occupational sperm studies. Am J Epidemiol. 1998 Apr 1;147(7):681–685. doi: 10.1093/oxfordjournals.aje.a009509. [DOI] [PubMed] [Google Scholar]
  18. Lerda D. Study of sperm characteristics in persons occupationally exposed to lead. Am J Ind Med. 1992;22(4):567–571. doi: 10.1002/ajim.4700220411. [DOI] [PubMed] [Google Scholar]
  19. Moorman W. J., Skaggs S. R., Clark J. C., Turner T. W., Sharpnack D. D., Murrell J. A., Simon S. D., Chapin R. E., Schrader S. M. Male reproductive effects of lead, including species extrapolation for the rabbit model. Reprod Toxicol. 1998 May-Jun;12(3):333–346. doi: 10.1016/s0890-6238(98)00010-0. [DOI] [PubMed] [Google Scholar]
  20. Quintanilla-Vega B., Hoover D. J., Bal W., Silbergeld E. K., Waalkes M. P., Anderson L. D. Lead interaction with human protamine (HP2) as a mechanism of male reproductive toxicity. Chem Res Toxicol. 2000 Jul;13(7):594–600. doi: 10.1021/tx000017v. [DOI] [PubMed] [Google Scholar]
  21. Robins T. G., Bornman M. S., Ehrlich R. I., Cantrell A. C., Pienaar E., Vallabh J., Miller S. Semen quality and fertility of men employed in a South African lead acid battery plant. Am J Ind Med. 1997 Oct;32(4):369–376. doi: 10.1002/(sici)1097-0274(199710)32:4<369::aid-ajim8>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  22. Rothenberg S. J., Manalo M., Jiang J., Khan F., Cuellar R., Reyes S., Sanchez M., Reynoso B., Aguilar A., Diaz M. Maternal blood lead level during pregnancy in South Central Los Angeles. Arch Environ Health. 1999 May-Jun;54(3):151–157. doi: 10.1080/00039899909602253. [DOI] [PubMed] [Google Scholar]
  23. Rothenberg S. J., Schnaas L., Perroni E., Hernández R. M., Karchmer S. Secular trend in blood lead levels in a cohort of Mexico City children. Arch Environ Health. 1998 May-Jun;53(3):231–235. doi: 10.1080/00039899809605700. [DOI] [PubMed] [Google Scholar]
  24. Rothenberg S. J., Williams F. A., Jr, Delrahim S., Khan F., Kraft M., Lu M., Manalo M., Sanchez M., Wooten D. J. Blood lead levels in children in south central Los Angeles. Arch Environ Health. 1996 Sep-Oct;51(5):383–388. doi: 10.1080/00039896.1996.9934426. [DOI] [PubMed] [Google Scholar]
  25. Schell L. M., Stark A. D., Gomez M. I., Grattan W. A. Blood lead level, by year and season, among poor pregnant women. Arch Environ Health. 1997 Jul-Aug;52(4):286–291. doi: 10.1080/00039899709602200. [DOI] [PubMed] [Google Scholar]
  26. Schwartz D., Laplanche A., Jouannet P., David G. Within-subject variability of human semen in regard to sperm count, volume, total number of spermatozoa and length of abstinence. J Reprod Fertil. 1979 Nov;57(2):391–395. doi: 10.1530/jrf.0.0570391. [DOI] [PubMed] [Google Scholar]
  27. Spanò M., Bonde J. P., Hjøllund H. I., Kolstad H. A., Cordelli E., Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril. 2000 Jan;73(1):43–50. doi: 10.1016/s0015-0282(99)00462-8. [DOI] [PubMed] [Google Scholar]
  28. Spanò M., Kolstad A. H., Larsen S. B., Cordelli E., Leter G., Giwercman A., Bonde J. P. The applicability of the flow cytometric sperm chromatin structure assay in epidemiological studies. Asclepios. Hum Reprod. 1998 Sep;13(9):2495–2505. doi: 10.1093/humrep/13.9.2495. [DOI] [PubMed] [Google Scholar]
  29. Telisman S., Cvitković P., Jurasović J., Pizent A., Gavella M., Rocić B. Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men. Environ Health Perspect. 2000 Jan;108(1):45–53. doi: 10.1289/ehp.0010845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Viskum S., Rabjerg L., Jørgensen P. J., Grandjean P. Improvement in semen quality associated with decreasing occupational lead exposure. Am J Ind Med. 1999 Mar;35(3):257–263. doi: 10.1002/(sici)1097-0274(199903)35:3<257::aid-ajim5>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]

Articles from Occupational and Environmental Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES