Abstract
The nucleotide sequences encoding the major 25-kDa outer membrane protein (OMP) (omp25 genes) of Brucella ovis 63/290, Brucella melitensis 16M, Brucella suis 1330, Brucella canis RM6/66, and Brucella neotomae 5K33 (all reference strains) were determined and compared with that of Brucella abortus 544 (P. de Wergifosse, P. Lintermans, J. N. Limet, and A. Cloeckaert, J. Bacteriol. 177:1911-1914, 1995). The major difference found was between the omp25 gene of B. ovis and those of the other Brucella species; the B. ovis gene had a 36-bp deletion located at the 3' end of the gene. The corresponding regions of other Brucella species contain two 8-bp direct repeats and two 4-bp inverted repeats, which could have been involved in the genesis of the deletion. The mechanism responsible for the genesis of the deletion appears to be related to the "slipped mispairing" mechanism described in the literature. Expression of the 25-kDa outer membrane protein (Omp25) in Brucella spp. or expression from the cloned omp25 gene in Escherichia coli cells was studied with a panel of anti-Omp25 monoclonal antibodies (MAbs). As shown by enzyme-linked immunosorbent assay (ELISA) and immunoelectron microscopy, Omp25 was exported to the outer membrane in E. coli expressing either the truncated omp25 gene of B. ovis or the entire omp25 genes of the other Brucella species. Size and antigenic shifts due to the 36-bp deletion were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting and by the differences in binding patterns in ELISA of the anti-Omp25 MAbs at the cell surface of E. coli cells harboring the appropriate gene and of cells of B. ovis and other Brucella species. In particular, MAbs directed against discontinuous epitopes of the entire Omp25 showed the absence of, or a significant reduction in, antibody reactivity with the B. ovis truncated Omp25. The results indicated that, as defined by the MAbs, exported Omp25 probably presents similar topologies in the outer membranes of E. coli and Brucella spp. and that the short deletion found in the omp25 gene of B. ovis has important consequences for the expression of surface B-cell epitopes which should be considered for the development of vaccines against B. ovis infection.
Full Text
The Full Text of this article is available as a PDF (678.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albertini A. M., Hofer M., Calos M. P., Miller J. H. On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell. 1982 Jun;29(2):319–328. doi: 10.1016/0092-8674(82)90148-9. [DOI] [PubMed] [Google Scholar]
- Bowden R. A., Cloeckaert A., Zygmunt M. S., Bernard S., Dubray G. Surface exposure of outer membrane protein and lipopolysaccharide epitopes in Brucella species studied by enzyme-linked immunosorbent assay and flow cytometry. Infect Immun. 1995 Oct;63(10):3945–3952. doi: 10.1128/iai.63.10.3945-3952.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunham R. C., Plummer F. A., Stephens R. S. Bacterial antigenic variation, host immune response, and pathogen-host coevolution. Infect Immun. 1993 Jun;61(6):2273–2276. doi: 10.1128/iai.61.6.2273-2276.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cloeckaert A., Jacques I., Bosseray N., Limet J. N., Bowden R., Dubray G., Plommet M. Protection conferred on mice by monoclonal antibodies directed against outer-membrane-protein antigens of Brucella. J Med Microbiol. 1991 Mar;34(3):175–180. doi: 10.1099/00222615-34-3-175. [DOI] [PubMed] [Google Scholar]
- Cloeckaert A., Kerkhofs P., Limet J. N. Antibody response to Brucella outer membrane proteins in bovine brucellosis: immunoblot analysis and competitive enzyme-linked immunosorbent assay using monoclonal antibodies. J Clin Microbiol. 1992 Dec;30(12):3168–3174. doi: 10.1128/jcm.30.12.3168-3174.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cloeckaert A., Verger J. M., Grayon M., Grépinet O. Restriction site polymorphism of the genes encoding the major 25 kDa and 36 kDa outer-membrane proteins of Brucella. Microbiology. 1995 Sep;141(Pt 9):2111–2121. doi: 10.1099/13500872-141-9-2111. [DOI] [PubMed] [Google Scholar]
- Cloeckaert A., Zygmunt M. S., Bézard G., Dubray G. Purification and antigenic analysis of the major 25-kilodalton outer membrane protein of Brucella abortus. Res Microbiol. 1996 May;147(4):225–235. doi: 10.1016/0923-2508(96)81383-0. [DOI] [PubMed] [Google Scholar]
- Cloeckaert A., Zygmunt M. S., Nicolle J. C., Dubray G., Limet J. N. O-chain expression in the rough Brucella melitensis strain B115: induction of O-polysaccharide-specific monoclonal antibodies and intracellular localization demonstrated by immunoelectron microscopy. J Gen Microbiol. 1992 Jun;138(6):1211–1219. doi: 10.1099/00221287-138-6-1211. [DOI] [PubMed] [Google Scholar]
- Cloeckaert A., Zygmunt M. S., de Wergifosse P., Dubray G., Limet J. N. Demonstration of peptidoglycan-associated Brucella outer-membrane proteins by use of monoclonal antibodies. J Gen Microbiol. 1992 Jul;138(7):1543–1550. doi: 10.1099/00221287-138-7-1543. [DOI] [PubMed] [Google Scholar]
- Cloeckaert A., de Wergifosse P., Dubray G., Limet J. N. Identification of seven surface-exposed Brucella outer membrane proteins by use of monoclonal antibodies: immunogold labeling for electron microscopy and enzyme-linked immunosorbent assay. Infect Immun. 1990 Dec;58(12):3980–3987. doi: 10.1128/iai.58.12.3980-3987.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Douglas J. T., Rosenberg E. Y., Nikaido H., Verstreate D. R., Winter A. J. Porins of Brucella species. Infect Immun. 1984 Apr;44(1):16–21. doi: 10.1128/iai.44.1.16-21.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubray G., Bézard G. Isolation of three Brucella abortus cell-wall antigens protective in murine experimental brucellosis. Ann Rech Vet. 1980;11(4):367–373. [PubMed] [Google Scholar]
- Dubray G., Charriaut C. Evidence of three major polypeptide species and two major polysaccharide species in the Brucella outer membrane. Ann Rech Vet. 1983;14(3):311–318. [PubMed] [Google Scholar]
- Dubray G. Protective antigens in brucellosis. Ann Inst Pasteur Microbiol. 1987 Jan-Feb;138(1):84–87. doi: 10.1016/0769-2609(87)90080-9. [DOI] [PubMed] [Google Scholar]
- Ficht T. A., Bearden S. W., Sowa B. A., Marquis H. Genetic variation at the omp2 porin locus of the brucellae: species-specific markers. Mol Microbiol. 1990 Jul;4(7):1135–1142. doi: 10.1111/j.1365-2958.1990.tb00688.x. [DOI] [PubMed] [Google Scholar]
- Gamazo C., Vitas A. I., Moriyón I., López-Goñi I., Díaz R. Brucella group 3 outer membrane proteins contain a heat-modifiable protein. FEMS Microbiol Lett. 1993 Sep 1;112(2):141–146. doi: 10.1111/j.1574-6968.1993.tb06439.x. [DOI] [PubMed] [Google Scholar]
- Gamazo C., Winter A. J., Moriyón I., Riezu-Boj J. I., Blasco J. M., Díaz R. Comparative analyses of proteins extracted by hot saline or released spontaneously into outer membrane blebs from field strains of Brucella ovis and Brucella melitensis. Infect Immun. 1989 May;57(5):1419–1426. doi: 10.1128/iai.57.5.1419-1426.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glickman B. W., Ripley L. S. Structural intermediates of deletion mutagenesis: a role for palindromic DNA. Proc Natl Acad Sci U S A. 1984 Jan;81(2):512–516. doi: 10.1073/pnas.81.2.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenspan N. S., Cooper L. J. Intermolecular cooperativity: a clue to why mice have IgG3? Immunol Today. 1992 May;13(5):164–168. doi: 10.1016/0167-5699(92)90120-V. [DOI] [PubMed] [Google Scholar]
- Halling S. M., Tatum F. M., Bricker B. J. Sequence and characterization of an insertion sequence, IS711, from Brucella ovis. Gene. 1993 Oct 29;133(1):123–127. doi: 10.1016/0378-1119(93)90236-v. [DOI] [PubMed] [Google Scholar]
- Jiménez de Bagüs M. P., Elzer P. H., Blasco J. M., Marín C. M., Gamazo C., Winter A. J. Protective immunity to Brucella ovis in BALB/c mice following recovery from primary infection or immunization with subcellular vaccines. Infect Immun. 1994 Feb;62(2):632–638. doi: 10.1128/iai.62.2.632-638.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kittelberger R., Hilbink F., Hansen M. F., Ross G. P., de Lisle G. W., Cloeckaert A., de Bruyn J. Identification and characterization of immunodominant antigens during the course of infection with Brucella ovis. J Vet Diagn Invest. 1995 Apr;7(2):210–218. doi: 10.1177/104063879500700208. [DOI] [PubMed] [Google Scholar]
- Ouahrani S., Michaux S., Sri Widada J., Bourg G., Tournebize R., Ramuz M., Liautard J. P. Identification and sequence analysis of IS6501, an insertion sequence in Brucella spp.: relationship between genomic structure and the number of IS6501 copies. J Gen Microbiol. 1993 Dec;139(12):3265–3273. doi: 10.1099/00221287-139-12-3265. [DOI] [PubMed] [Google Scholar]
- Riezu-Boj J. I., Moriyón I., Blasco J. M., Gamazo C., Díaz R. Antibody response to Brucella ovis outer membrane proteins in ovine brucellosis. Infect Immun. 1990 Feb;58(2):489–494. doi: 10.1128/iai.58.2.489-494.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sangari F. J., García-Lobo J. M., Agüero J. The Brucella abortus vaccine strain B19 carries a deletion in the erythritol catabolic genes. FEMS Microbiol Lett. 1994 Sep 1;121(3):337–342. doi: 10.1111/j.1574-6968.1994.tb07123.x. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seifert H. S., So M. Genetic mechanisms of bacterial antigenic variation. Microbiol Rev. 1988 Sep;52(3):327–336. doi: 10.1128/mr.52.3.327-336.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer B. S., Westlye J. Deletion formation in bacteriophage T4. J Mol Biol. 1988 Jul 20;202(2):233–243. doi: 10.1016/0022-2836(88)90454-8. [DOI] [PubMed] [Google Scholar]
- Sowa B. A., Kelly K. A., Ficht T. A., Frey M., Adams L. G. SDS-soluble and peptidoglycan-bound proteins in the outer membrane-peptidoglycan complex of Brucella abortus. Vet Microbiol. 1991 May;27(3-4):351–369. doi: 10.1016/0378-1135(91)90160-h. [DOI] [PubMed] [Google Scholar]
- Verstreate D. R., Creasy M. T., Caveney N. T., Baldwin C. L., Blab M. W., Winter A. J. Outer membrane proteins of Brucella abortus: isolation and characterization. Infect Immun. 1982 Mar;35(3):979–989. doi: 10.1128/iai.35.3.979-989.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winter A. J., Rowe G. E., Duncan J. R., Eis M. J., Widom J., Ganem B., Morein B. Effectiveness of natural and synthetic complexes of porin and O polysaccharide as vaccines against Brucella abortus in mice. Infect Immun. 1988 Nov;56(11):2808–2817. doi: 10.1128/iai.56.11.2808-2817.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zygmunt M. S., Cloeckaert A., Dubray G. Brucella melitensis cell envelope protein and lipopolysaccharide epitopes involved in humoral immune responses of naturally and experimentally infected sheep. J Clin Microbiol. 1994 Oct;32(10):2514–2522. doi: 10.1128/jcm.32.10.2514-2522.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Wergifosse P., Lintermans P., Limet J. N., Cloeckaert A. Cloning and nucleotide sequence of the gene coding for the major 25-kilodalton outer membrane protein of Brucella abortus. J Bacteriol. 1995 Apr;177(7):1911–1914. doi: 10.1128/jb.177.7.1911-1914.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]