Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Jun;64(6):2079–2087. doi: 10.1128/iai.64.6.2079-2087.1996

CD4+ T-helper lymphocyte responses against Babesia bigemina rhoptry-associated protein I.

S D Rodríguez 1, G H Palmer 1, T F McElwain 1, T C McGuire 1, B J Ruef 1, M G Chitko-McKown 1, W C Brown 1
PMCID: PMC174039  PMID: 8675310

Abstract

A multigene family of 58- to 60-kDa proteins, which are designated rhoptry-associated protein 1 (RAP-1) and which come from the parasites Babesia bigemina and Babesia bovis, is a target for vaccine development. The presence of multiple gene copies and conserved sequences and epitopes of RAP-1 implies that these proteins are functionally important for the survival of these parasites. Furthermore, it was previously shown that B. bigemina RAP-1 induced partial protection against challenge infection. However, the lack of correlation between protective immunity to B. bigemina infection and antibody titers against a merozoite surface-exposed, neutralization-sensitive epitope of B. bigemina RAP-1 indicated the potential importance of RAP-1-specific T helper (Th) cells in the observed protection. To begin to understand the mechanism of RAP-1-induced protective immunity, RAP-1-specific T-cell responses were characterized in cattle. Vigorous and sustained proliferative responses of peripheral blood mononuclear cells from native RAP-1-immunized cattle were observed. The anamnestic response in immunized cattle was specific for B. bigemina RAP-1 and predominantly comprised CD4+ T cells, which upon cloning expressed type 1 cytokine mRNA profiles and high levels of gamma interferon protein. The T cells responded to both native and recombinant forms of RAP-1, indicating the potential to use recombinant protein or epitopes derived therefrom as a vaccine that could evoke specific recall responses after exposure to natural infection. The differential responses of peripheral blood mononuclear cells and seven Th-cell clones derived from RAP-1-immunized cattle to different Central American strains of B. bigemina indicated the presence of at least one conserved and one variable Th-cell epitope. The lack of response to B. bovis RAP-1 indicated that a strictly conserved 14-amino-acid peptide shared by the two babesial species was not immunogenic for Th cells in these experiments. However, the Th-cell epitope conserved among strains of B. bigemina may be a useful component of a RAP-1 subunit vaccine.

Full Text

The Full Text of this article is available as a PDF (436.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloom B. R., Salgame P., Diamond B. Revisiting and revising suppressor T cells. Immunol Today. 1992 Apr;13(4):131–136. doi: 10.1016/0167-5699(92)90110-S. [DOI] [PubMed] [Google Scholar]
  2. Bock R. E., de Vos A. J., Kingston T. G., Shiels I. A., Dalgliesh R. J. Investigations of breakdowns in protection provided by living Babesia bovis vaccine. Vet Parasitol. 1992 Jun;43(1-2):45–56. doi: 10.1016/0304-4017(92)90047-d. [DOI] [PubMed] [Google Scholar]
  3. Brown W. C., Davis W. C., Choi S. H., Dobbelaere D. A., Splitter G. A. Functional and phenotypic characterization of WC1+ gamma/delta T cells isolated from Babesia bovis-stimulated T cell lines. Cell Immunol. 1994 Jan;153(1):9–27. doi: 10.1006/cimm.1994.1002. [DOI] [PubMed] [Google Scholar]
  4. Brown W. C., Davis W. C., Dobbelaere D. A., Rice-Ficht A. C. CD4+ T-cell clones obtained from cattle chronically infected with Fasciola hepatica and specific for adult worm antigen express both unrestricted and Th2 cytokine profiles. Infect Immun. 1994 Mar;62(3):818–827. doi: 10.1128/iai.62.3.818-827.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown W. C., Logan K. S. Babesia bovis: bovine helper T cell lines reactive with soluble and membrane antigens of merozoites. Exp Parasitol. 1992 Mar;74(2):188–199. doi: 10.1016/0014-4894(92)90046-d. [DOI] [PubMed] [Google Scholar]
  6. Brown W. C., Logan K. S., Wagner G. G., Tetzlaff C. L. Cell-mediated immune responses to Babesia bovis merozoite antigens in cattle following infection with tick-derived or cultured parasites. Infect Immun. 1991 Jul;59(7):2418–2426. doi: 10.1128/iai.59.7.2418-2426.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown W. C., Logan K. S., Zhao S., Bergman D. K., Rice-Ficht A. C. Identification of Babesia bovis merozoite antigens separated by continuous-flow electrophoresis that stimulate proliferation of helper T-cell clones derived from B. bovis-immune cattle. Infect Immun. 1995 Aug;63(8):3106–3116. doi: 10.1128/iai.63.8.3106-3116.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown W. C., Palmer G. H., McElwain T. F., Hines S. A., Dobbelaere D. A. Babesia bovis: characterization of the T helper cell response against the 42-kDa merozoite surface antigen (MSA-1) in cattle. Exp Parasitol. 1993 Aug;77(1):97–110. doi: 10.1006/expr.1993.1065. [DOI] [PubMed] [Google Scholar]
  9. Brown W. C., Rice-Ficht A. C. Use of helper T cells to identify potential vaccine antigens of Babesia bovis. Parasitol Today. 1994 Apr;10(4):145–149. doi: 10.1016/0169-4758(94)90265-8. [DOI] [PubMed] [Google Scholar]
  10. Brown W. C., Woods V. M., Chitko-McKown C. G., Hash S. M., Rice-Ficht A. C. Interleukin-10 is expressed by bovine type 1 helper, type 2 helper, and unrestricted parasite-specific T-cell clones and inhibits proliferation of all three subsets in an accessory-cell-dependent manner. Infect Immun. 1994 Nov;62(11):4697–4708. doi: 10.1128/iai.62.11.4697-4708.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brown W. C., Woods V. M., Dobbelaere D. A., Logan K. S. Heterogeneity in cytokine profiles of Babesia bovis-specific bovine CD4+ T cells clones activated in vitro. Infect Immun. 1993 Aug;61(8):3273–3281. doi: 10.1128/iai.61.8.3273-3281.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Brown W. C., Zhao S., Rice-Ficht A. C., Logan K. S., Woods V. M. Bovine helper T cell clones recognize five distinct epitopes on Babesia bovis merozoite antigens. Infect Immun. 1992 Oct;60(10):4364–4372. doi: 10.1128/iai.60.10.4364-4372.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Brown W. C., Zhao S., Woods V. M., Tripp C. A., Tetzlaff C. L., Heussler V. T., Dobbelaere D. A., Rice-Ficht A. C. Identification of two Th1 cell epitopes on the Babesia bovis-encoded 77-kilodalton merozoite protein (Bb-1) by use of truncated recombinant fusion proteins. Infect Immun. 1993 Jan;61(1):236–244. doi: 10.1128/iai.61.1.236-244.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Callow L. L., Mellors L. T. A new vaccine for Babesia argentina infection prepared in splenectomised calves. Aust Vet J. 1966 Dec;42(12):464–465. doi: 10.1111/j.1751-0813.1966.tb14476.x. [DOI] [PubMed] [Google Scholar]
  15. Callow L. L. Vaccination against bovine babesiosis. Adv Exp Med Biol. 1977;93:121–149. doi: 10.1007/978-1-4615-8855-9_9. [DOI] [PubMed] [Google Scholar]
  16. Cerretti D. P., McKereghan K., Larsen A., Cantrell M. A., Anderson D., Gillis S., Cosman D., Baker P. E. Cloning, sequence, and expression of bovine interleukin 2. Proc Natl Acad Sci U S A. 1986 May;83(10):3223–3227. doi: 10.1073/pnas.83.10.3223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cerretti D. P., McKereghan K., Larsen A., Cosman D., Gillis S., Baker P. E. Cloning, sequence, and expression of bovine interferon-gamma. J Immunol. 1986 Jun 15;136(12):4561–4564. [PubMed] [Google Scholar]
  18. Chitko-McKown C. G., Ruef B. J., Rice-Ficht A. C., Brown W. C. Interleukin-10 downregulates proliferation and expression of interleukin-2 receptor p55 chain and interferon-gamma, but not interleukin-2 or interleukin-4, by parasite-specific helper T cell clones obtained from cattle chronically infected with Babesia bovis or Fasciola hepatica. J Interferon Cytokine Res. 1995 Oct;15(10):915–922. doi: 10.1089/jir.1995.15.915. [DOI] [PubMed] [Google Scholar]
  19. Dalrymple B. P., Casu R. E., Peters J. M., Dimmock C. M., Gale K. R., Boese R., Wright I. G. Characterisation of a family of multi-copy genes encoding rhoptry protein homologues in Babesia bovis, Babesia ovis and Babesia canis. Mol Biochem Parasitol. 1993 Feb;57(2):181–192. doi: 10.1016/0166-6851(93)90194-3. [DOI] [PubMed] [Google Scholar]
  20. Dalrymple B. P. Molecular variation and diversity in candidate vaccine antigens from Babesia. Acta Trop. 1993 May;53(3-4):227–238. doi: 10.1016/0001-706x(93)90031-6. [DOI] [PubMed] [Google Scholar]
  21. Degen J. L., Neubauer M. G., Degen S. J., Seyfried C. E., Morris D. R. Regulation of protein synthesis in mitogen-activated bovine lymphocytes. Analysis of actin-specific and total mRNA accumulation and utilization. J Biol Chem. 1983 Oct 25;258(20):12153–12162. [PubMed] [Google Scholar]
  22. Estes D. M., Closser N. M., Allen G. K. IFN-gamma stimulates IgG2 production from bovine B cells costimulated with anti-mu and mitogen. Cell Immunol. 1994 Apr 1;154(1):287–295. doi: 10.1006/cimm.1994.1078. [DOI] [PubMed] [Google Scholar]
  23. Estes D. M., Hirano A., Heussler V. T., Dobbelaere D. A., Brown W. C. Expression and biological activities of bovine interleukin 4: effects of recombinant bovine interleukin 4 on T cell proliferation and B cell differentiation and proliferation in vitro. Cell Immunol. 1995 Jul;163(2):268–279. doi: 10.1006/cimm.1995.1126. [DOI] [PubMed] [Google Scholar]
  24. Figueroa J. V., Buening G. M. In vitro inhibition of multiplication of Babesia bigemina by using monoclonal antibodies. J Clin Microbiol. 1991 May;29(5):997–1003. doi: 10.1128/jcm.29.5.997-1003.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Goff W. L., Davis W. C., Palmer G. H., McElwain T. F., Johnson W. C., Bailey J. F., McGuire T. C. Identification of Babesia bovis merozoite surface antigens by using immune bovine sera and monoclonal antibodies. Infect Immun. 1988 Sep;56(9):2363–2368. doi: 10.1128/iai.56.9.2363-2368.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hash S. M., Brown W. C., Rice-Ficht A. C. Characterization of a cDNA encoding bovine interleukin 10: kinetics of expression in bovine lymphocytes. Gene. 1994 Feb 25;139(2):257–261. doi: 10.1016/0378-1119(94)90766-8. [DOI] [PubMed] [Google Scholar]
  27. Heussler V. T., Eichhorn M., Dobbelaere D. A. Cloning of a full-length cDNA encoding bovine interleukin 4 by the polymerase chain reaction. Gene. 1992 May 15;114(2):273–278. doi: 10.1016/0378-1119(92)90587-f. [DOI] [PubMed] [Google Scholar]
  28. Howard R. J., Pasloske B. L. Target antigens for asexual malaria vaccine development. Parasitol Today. 1993 Oct;9(10):369–372. doi: 10.1016/0169-4758(93)90085-t. [DOI] [PubMed] [Google Scholar]
  29. Jakobsen P. H., Hviid L., Theander T. G., Afare E. A., Ridley R. G., Heegaard P. M., Stuber D., Dalsgaard K., Nkrumah F. K. Specific T-cell recognition of the merozoite proteins rhoptry-associated protein 1 and erythrocyte-binding antigen 1 of Plasmodium falciparum. Infect Immun. 1993 Jan;61(1):268–273. doi: 10.1128/iai.61.1.268-273.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jorgensen W. K., De Vos A. J., Dalgliesh R. J. Comparison of immunogenicity and virulence between Babesia bigemina parasites from continuous culture and from a splenectomised calf. Aust Vet J. 1989 Nov;66(11):371–372. doi: 10.1111/j.1751-0813.1989.tb09738.x. [DOI] [PubMed] [Google Scholar]
  31. Kelso A. Th1 and Th2 subsets: paradigms lost? Immunol Today. 1995 Aug;16(8):374–379. doi: 10.1016/0167-5699(95)80004-2. [DOI] [PubMed] [Google Scholar]
  32. McElwain T. F., Perryman L. E., Davis W. C., McGuire T. C. Antibodies define multiple proteins with epitopes exposed on the surface of live Babesia bigemina merozoites. J Immunol. 1987 Apr 1;138(7):2298–2304. [PubMed] [Google Scholar]
  33. McElwain T. F., Perryman L. E., Musoke A. J., McGuire T. C. Molecular characterization and immunogenicity of neutralization-sensitive Babesia bigemina merozoite surface proteins. Mol Biochem Parasitol. 1991 Aug;47(2):213–222. doi: 10.1016/0166-6851(91)90181-5. [DOI] [PubMed] [Google Scholar]
  34. Mishra V. S., McElwain T. F., Dame J. B., Stephens E. B. Isolation, sequence and differential expression of the p58 gene family of Babesia bigemina. Mol Biochem Parasitol. 1992 Jul;53(1-2):149–158. doi: 10.1016/0166-6851(92)90017-e. [DOI] [PubMed] [Google Scholar]
  35. Mishra V. S., Stephens E. B., Dame J. B., Perryman L. E., McGuire T. C., McElwain T. F. Immunogenicity and sequence analysis of recombinant p58: a neutralization-sensitive, antigenically conserved Babesia bigemina merozoite surface protein. Mol Biochem Parasitol. 1991 Aug;47(2):207–212. doi: 10.1016/0166-6851(91)90180-e. [DOI] [PubMed] [Google Scholar]
  36. Palmer G. H., McElwain T. F. Molecular basis for vaccine development against anaplasmosis and babesiosis. Vet Parasitol. 1995 Mar;57(1-3):233–253. doi: 10.1016/0304-4017(94)03123-e. [DOI] [PubMed] [Google Scholar]
  37. Palmer G. H., McElwain T. F., Perryman L. E., Davis W. C., Reduker D. R., Jasmer D. P., Shkap V., Pipano E., Goff W. L., McGuire T. C. Strain variation of Babesia bovis merozoite surface-exposed epitopes. Infect Immun. 1991 Sep;59(9):3340–3342. doi: 10.1128/iai.59.9.3340-3342.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Perkins M. E. Rhoptry organelles of apicomplexan parasites. Parasitol Today. 1992 Jan;8(1):28–32. doi: 10.1016/0169-4758(92)90308-o. [DOI] [PubMed] [Google Scholar]
  39. Ridley R. G., Takacs B., Etlinger H., Scaife J. G. A rhoptry antigen of Plasmodium falciparum is protective in Saimiri monkeys. Parasitology. 1990 Oct;101(Pt 2):187–192. doi: 10.1017/s0031182000063228. [DOI] [PubMed] [Google Scholar]
  40. Rodriguez S. D., Buening G. M., Green T. J., Carson C. A. Cloning of Babesia bovis by in vitro cultivation. Infect Immun. 1983 Oct;42(1):15–18. doi: 10.1128/iai.42.1.15-18.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rogers R. J., Dimmock C. K., de Vos A. J., Rodwell B. J. Bovine leucosis virus contamination of a vaccine produced in vivo against bovine babesiosis and anaplasmosis. Aust Vet J. 1988 Sep;65(9):285–287. doi: 10.1111/j.1751-0813.1988.tb16144.x. [DOI] [PubMed] [Google Scholar]
  42. Shompole S., McElwain T. F., Jasmer D. P., Hines S. A., Katende J., Musoke A. J., Rurangirwa F. R., McGuire T. C. Identification of Babesia bigemina infected erythrocyte surface antigens containing epitopes conserved among strains. Parasite Immunol. 1994 Mar;16(3):119–127. doi: 10.1111/j.1365-3024.1994.tb00331.x. [DOI] [PubMed] [Google Scholar]
  43. Siddiqui W. A., Tam L. Q., Kramer K. J., Hui G. S., Case S. E., Yamaga K. M., Chang S. P., Chan E. B., Kan S. C. Merozoite surface coat precursor protein completely protects Aotus monkeys against Plasmodium falciparum malaria. Proc Natl Acad Sci U S A. 1987 May;84(9):3014–3018. doi: 10.1073/pnas.84.9.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Suarez C. E., McElwain T. F., Stephens E. B., Mishra V. S., Palmer G. H. Sequence conservation among merozoite apical complex proteins of Babesia bovis, Babesia bigemina and other apicomplexa. Mol Biochem Parasitol. 1991 Dec;49(2):329–332. doi: 10.1016/0166-6851(91)90077-j. [DOI] [PubMed] [Google Scholar]
  45. Suarez C. E., Palmer G. H., Hines S. A., McElwain T. F. Immunogenic B-cell epitopes of Babesia bovis rhoptry-associated protein 1 are distinct from sequences conserved between species. Infect Immun. 1993 Aug;61(8):3511–3517. doi: 10.1128/iai.61.8.3511-3517.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Suarez C. E., Palmer G. H., Jasmer D. P., Hines S. A., Perryman L. E., McElwain T. F. Characterization of the gene encoding a 60-kilodalton Babesia bovis merozoite protein with conserved and surface exposed epitopes. Mol Biochem Parasitol. 1991 May;46(1):45–52. doi: 10.1016/0166-6851(91)90197-e. [DOI] [PubMed] [Google Scholar]
  47. Taylor-Robinson A. W. Regulation of immunity to malaria: valuable lessons learned from murine models. Parasitol Today. 1995 Sep;11(9):334–342. doi: 10.1016/0169-4758(95)80186-3. [DOI] [PubMed] [Google Scholar]
  48. Tetzlaff C. L., Rice-Ficht A. C., Woods V. M., Brown W. C. Induction of proliferative responses of T cells from Babesia bovis-immune cattle with a recombinant 77-kilodalton merozoite protein (Bb-1). Infect Immun. 1992 Feb;60(2):644–652. doi: 10.1128/iai.60.2.644-652.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Timms P., Stewart N. P., Rodwell B. J., Barry D. N. Immune responses of cattle following vaccination with living and non-living Babesia bovis antigens. Vet Parasitol. 1984 Nov;16(3-4):243–251. doi: 10.1016/0304-4017(84)90042-6. [DOI] [PubMed] [Google Scholar]
  50. Ushe T. C., Palmer G. H., Sotomayor L., Figueroa J. V., Buening G. M., Perryman L. E., McElwain T. F. Antibody response to a Babesia bigemina rhoptry-associated protein 1 surface-exposed and neutralization-sensitive epitope in immune cattle. Infect Immun. 1994 Dec;62(12):5698–5701. doi: 10.1128/iai.62.12.5698-5701.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Vega C. A., Buening G. M., Green T. J., Carson C. A. In vitro cultivation of Babesia bigemina. Am J Vet Res. 1985 Feb;46(2):416–420. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES