Abstract
Aims: To estimate exposures to benzene and naphthalene among military personnel working with jet fuel (JP-8) and to determine whether naphthalene might serve as a surrogate for JP-8 in studies of health effects.
Methods: Benzene and naphthalene were measured in air and breath of 326 personnel in the US Air Force, who had been assigned a priori into low, moderate, and high exposure categories for JP-8.
Results: Median air concentrations for persons in the low, moderate, and high exposure categories were 3.1, 7.4, and 252 µg benzene/m3 air, 4.6, 9.0, and 11.4 µg benzene/m3 breath, 1.9, 10.3, and 485 µg naphthalene/m3 air, and 0.73, 0.93, and 1.83 µg naphthalene/m3 breath, respectively. In the moderate and high exposure categories, 5% and 15% of the benzene air concentrations, respectively, were above the 2002 threshold limit value (TLV) of 1.6 mg/m3. Multiple regression analyses of air and breath levels revealed prominent background sources of benzene exposure, including cigarette smoke. However, naphthalene exposure was not unduly influenced by sources other than JP-8. Among heavily exposed workers, dermal contact with JP-8 contributed to air and breath concentrations along with several physical and environmental factors.
Conclusions: Personnel having regular contact with JP-8 are occasionally exposed to benzene at levels above the current TLV. Among heavily exposed workers, uptake of JP-8 components occurs via both inhalation and dermal contact. Naphthalene in air and breath can serve as useful measures of exposure to JP-8 and uptake of fuel components in the body.
Full Text
The Full Text of this article is available as a PDF (347.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carlton G. N., Smith L. B. Exposures to jet fuel and benzene during aircraft fuel tank repair in the U.S. Air Force. Appl Occup Environ Hyg. 2000 Jun;15(6):485–491. doi: 10.1080/104732200301278. [DOI] [PubMed] [Google Scholar]
- Childers J. W., Witherspoon C. L., Smith L. B., Pleil J. D. Real-time and integrated measurement of potential human exposure to particle-bound polycyclic aromatic hydrocarbons (PAHs) from aircraft exhaust. Environ Health Perspect. 2000 Sep;108(9):853–862. doi: 10.1289/ehp.00108853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corley R. A., Gordon S. M., Wallace L. A. Physiologically based pharmacokinetic modeling of the temperature-dependent dermal absorption of chloroform by humans following bath water exposures. Toxicol Sci. 2000 Jan;53(1):13–23. doi: 10.1093/toxsci/53.1.13. [DOI] [PubMed] [Google Scholar]
- Droz P. O., Fernandez J. G. Effect of physical workload on retention and metabolism of inhaled organic solvents. A comparative theoretical approach and its applications with regards to exposure monitoring. Int Arch Occup Environ Health. 1977 Feb 25;38(4):231–246. doi: 10.1007/BF00378335. [DOI] [PubMed] [Google Scholar]
- Drummond L., Luck R., Afacan A. S., Wilson H. K. Biological monitoring of workers exposed to benzene in the coke oven industry. Br J Ind Med. 1988 Apr;45(4):256–261. doi: 10.1136/oem.45.4.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egeghy P. P., Tornero-Velez R., Rappaport S. M. Environmental and biological monitoring of benzene during self-service automobile refueling. Environ Health Perspect. 2000 Dec;108(12):1195–1202. doi: 10.1289/ehp.001081195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egeghy Peter P., Nylander-French Leena, Gwin Kristin K., Hertz-Picciotto Irva, Rappaport Stephen M. Self-collected breath sampling for monitoring low-level benzene exposures among automobile mechanics. Ann Occup Hyg. 2002 Jul;46(5):489–500. [PubMed] [Google Scholar]
- Kanikkannan N., Burton S., Patel R., Jackson T., Shaik M. S., Singh M. Percutaneous permeation and skin irritation of JP-8+100 jet fuel in a porcine model. Toxicol Lett. 2001 Feb 28;119(2):133–142. doi: 10.1016/s0378-4274(00)00311-8. [DOI] [PubMed] [Google Scholar]
- Kanikkannan N., Patel R., Jackson T., Shaik M. S., Singh M. Percutaneous absorption and skin irritation of JP-8 (jet fuel). Toxicology. 2001 Mar 21;161(1-2):1–11. doi: 10.1016/s0300-483x(00)00402-9. [DOI] [PubMed] [Google Scholar]
- Lemasters G. K., Olsen D. M., Yiin J. H., Lockey J. E., Shukla R., Selevan S. G., Schrader S. M., Toth G. P., Evenson D. P., Huszar G. B. Male reproductive effects of solvent and fuel exposure during aircraft maintenance. Reprod Toxicol. 1999 May-Jun;13(3):155–166. doi: 10.1016/s0890-6238(99)00012-x. [DOI] [PubMed] [Google Scholar]
- McDougal J. N., Pollard D. L., Weisman W., Garrett C. M., Miller T. E. Assessment of skin absorption and penetration of JP-8 jet fuel and its components. Toxicol Sci. 2000 Jun;55(2):247–255. doi: 10.1093/toxsci/55.2.247. [DOI] [PubMed] [Google Scholar]
- Pekari K., Vainiotalo S., Heikkilä P., Palotie A., Luotamo M., Riihimäki V. Biological monitoring of occupational exposure to low levels of benzene. Scand J Work Environ Health. 1992 Oct;18(5):317–322. doi: 10.5271/sjweh.1570. [DOI] [PubMed] [Google Scholar]
- Perbellini L., Faccini G. B., Pasini F., Cazzoli F., Pistoia S., Rosellini R., Valsecchi M., Brugnone F. Environmental and occupational exposure to benzene by analysis of breath and blood. Br J Ind Med. 1988 May;45(5):345–352. doi: 10.1136/oem.45.5.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pleil J. D., Lindstrom A. B. Sample timing and mathematical considerations for modeling breath elimination of volatile organic compounds. Risk Anal. 1998 Oct;18(5):585–602. doi: 10.1023/b:rian.0000005933.06396.5f. [DOI] [PubMed] [Google Scholar]
- Pleil J. D., Smith L. B., Zelnick S. D. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases. Environ Health Perspect. 2000 Mar;108(3):183–192. doi: 10.1289/ehp.00108183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raymer J. H., Pellizzari E. D., Thomas K. W., Cooper S. D. Elimination of volatile organic compounds in breath after exposure to occupational and environmental microenvironments. J Expo Anal Environ Epidemiol. 1991 Oct;1(4):439–451. [PubMed] [Google Scholar]
- Ritchie G. D., Still K. R., Alexander W. K., Nordholm A. F., Wilson C. L., Rossi J., 3rd, Mattie D. R. A review of the neurotoxicity risk of selected hydrocarbon fuels. J Toxicol Environ Health B Crit Rev. 2001 Jul-Sep;4(3):223–312. doi: 10.1080/109374001301419728. [DOI] [PubMed] [Google Scholar]
- Riviere J. E., Brooks J. D., Monteiro-Riviere N. A., Budsaba K., Smith C. E. Dermal absorption and distribution of topically dosed jet fuels jet-A, JP-8, and JP-8(100). Toxicol Appl Pharmacol. 1999 Oct 1;160(1):60–75. doi: 10.1006/taap.1999.8744. [DOI] [PubMed] [Google Scholar]
- Savitz D. A., Andrews K. W. Review of epidemiologic evidence on benzene and lymphatic and hematopoietic cancers. Am J Ind Med. 1997 Mar;31(3):287–295. doi: 10.1002/(sici)1097-0274(199703)31:3<287::aid-ajim4>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
- Schmeltz I., Tosk J., Hoffmann D. Formation and determination of naphthalenes in cigarette smoke. Anal Chem. 1976 Apr;48(4):645–650. doi: 10.1021/ac60368a031. [DOI] [PubMed] [Google Scholar]
- Smith L. B., Bhattacharya A., Lemasters G., Succop P., Puhala E., 2nd, Medvedovic M., Joyce J. Effect of chronic low-level exposure to jet fuel on postural balance of US Air Force personnel. J Occup Environ Med. 1997 Jul;39(7):623–632. doi: 10.1097/00043764-199707000-00007. [DOI] [PubMed] [Google Scholar]
- Wallace L. Environmental exposure to benzene: an update. Environ Health Perspect. 1996 Dec;104 (Suppl 6):1129–1136. doi: 10.1289/ehp.961041129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang M., Koga M., Katoh T., Kawamoto T. A study for the proper application of urinary naphthols, new biomarkers for airborne polycyclic aromatic hydrocarbons. Arch Environ Contam Toxicol. 1999 Jan;36(1):99–108. doi: 10.1007/s002449900447. [DOI] [PubMed] [Google Scholar]