Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Jun;64(6):2137–2143. doi: 10.1128/iai.64.6.2137-2143.1996

Cholera toxin induces synthesis of phospholipase A2-activating protein.

J W Peterson 1, S S Saini 1, W D Dickey 1, G R Klimpel 1, J S Bomalaski 1, M A Clark 1, X J Xu 1, A K Chopra 1
PMCID: PMC174047  PMID: 8675318

Abstract

The mechanism of cholera toxin (CT)-stimulated arachidonate metabolism was evaluated. CT caused rapid in vitro synthesis of prostaglandin E2 (PGE2) in murine smooth muscle-like cells (BC3H1), reaching maximal levels within 3 to 4 min. In comparison, cyclic AMP (cAMP) levels were unchanged, and addition of dibutyryl cAMP did not affect PGE2 synthesis. CT-induced PGE2 synthesis was prevented by actinomycin D or cycloheximide, indicating a need for de novo protein synthesis. Northern blot analysis of total RNA from BC3H1 cells revealed that exposure to CT resulted in an increase in abundance of mRNA encoding phospholipase A2 (PLA2)-activating protein (PLAP). PLAP is a regulatory protein that increases the enzymatic activity of cellular PLA(2), which in turn causes increased hydrolysis of arachidonate from membrane phospholipids. Furthermore, CT evoked the accumulation of PLAP mRNA in J774 (murine monocyte/macrophage) and Caco-2 (human intestinal epithelial) cells in vitro, but the responses were more delayed than that of BC3H1 cells. A protein band of approximately 35 kDa, which corresponded to the size of PLAP, was observed in sodium dodecyl sulfate extracts of Caco-2 cells by Western blot (immunoblot) analysis using affinity-purified antibodies to PLAP synthetic peptides. Synthesis of PLAP protein was increased after 2 h of exposure to CT. Exposure of mouse intestinal loops to either CT or live Salmonella typhimurium for 3 h increased mucosal PLAP mRNA levels. The role of PLAP in CT-induced PGE2 synthesis provides an attractive explanation for the reported suppression of CT-induced intestinal secretion by inhibitors of protein synthesis.

Full Text

The Full Text of this article is available as a PDF (731.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold J. W., Niesel D. W., Annable C. R., Hess C. B., Asuncion M., Cho Y. J., Peterson J. W., Klimpel G. R. Tumor necrosis factor-alpha mediates the early pathology in Salmonella infection of the gastrointestinal tract. Microb Pathog. 1993 Mar;14(3):217–227. doi: 10.1006/mpat.1993.1021. [DOI] [PubMed] [Google Scholar]
  2. Beubler E., Bukhave K., Rask-Madsen J. Significance of calcium for the prostaglandin E2-mediated secretory response to 5-hydroxytryptamine in the small intestine of the rat in vivo. Gastroenterology. 1986 Jun;90(6):1972–1977. doi: 10.1016/0016-5085(86)90269-6. [DOI] [PubMed] [Google Scholar]
  3. Beubler E., Kollar G., Saria A., Bukhave K., Rask-Madsen J. Involvement of 5-hydroxytryptamine, prostaglandin E2, and cyclic adenosine monophosphate in cholera toxin-induced fluid secretion in the small intestine of the rat in vivo. Gastroenterology. 1989 Feb;96(2 Pt 1):368–376. doi: 10.1016/0016-5085(89)91560-6. [DOI] [PubMed] [Google Scholar]
  4. Bomalaski J. S., Baker D. G., Brophy L., Resurreccion N. V., Spilberg I., Muniain M., Clark M. A. A phospholipase A2-activating protein (PLAP) stimulates human neutrophil aggregation and release of lysosomal enzymes, superoxide, and eicosanoids. J Immunol. 1989 Jun 1;142(11):3957–3962. [PubMed] [Google Scholar]
  5. Bomalaski J. S., Clark M. A. Phospholipase A2 and arthritis. Arthritis Rheum. 1993 Feb;36(2):190–198. doi: 10.1002/art.1780360208. [DOI] [PubMed] [Google Scholar]
  6. Bomalaski J. S., Fallon M., Turner R. A., Crooke S. T., Meunier P. C., Clark M. A. Identification and isolation of a phospholipase A2 activating protein in human rheumatoid arthritis synovial fluid: induction of eicosanoid synthesis and an inflammatory response in joints injected in vivo. J Lab Clin Med. 1990 Dec;116(6):814–825. [PubMed] [Google Scholar]
  7. Bomalaski J. S., Ford T., Hudson A. P., Clark M. A. Phospholipase A2-activating protein induces the synthesis of IL-1 and TNF in human monocytes. J Immunol. 1995 Apr 15;154(8):4027–4031. [PubMed] [Google Scholar]
  8. Bomalaski J. S., Steiner M. R., Simon P. L., Clark M. A. IL-1 increases phospholipase A2 activity, expression of phospholipase A2-activating protein, and release of linoleic acid from the murine T helper cell line EL-4. J Immunol. 1992 Jan 1;148(1):155–160. [PubMed] [Google Scholar]
  9. Burch R. M., Jelsema C., Axelrod J. Cholera toxin and pertussis toxin stimulate prostaglandin E2 synthesis in a murine macrophage cell line. J Pharmacol Exp Ther. 1988 Feb;244(2):765–773. [PubMed] [Google Scholar]
  10. Chopra A. K., Peterson J. W., Chary P., Prasad R. Molecular characterization of an enterotoxin from Salmonella typhimurium. Microb Pathog. 1994 Feb;16(2):85–98. doi: 10.1006/mpat.1994.1010. [DOI] [PubMed] [Google Scholar]
  11. Clark M. A., Chen M. J., Crooke S. T., Bomalaski J. S. Tumour necrosis factor (cachectin) induces phospholipase A2 activity and synthesis of a phospholipase A2-activating protein in endothelial cells. Biochem J. 1988 Feb 15;250(1):125–132. doi: 10.1042/bj2500125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Clark M. A., Conway T. M., Shorr R. G., Crooke S. T. Identification and isolation of a mammalian protein which is antigenically and functionally related to the phospholipase A2 stimulatory peptide melittin. J Biol Chem. 1987 Mar 25;262(9):4402–4406. [PubMed] [Google Scholar]
  13. Clark M. A., Ozgür L. E., Conway T. M., Dispoto J., Crooke S. T., Bomalaski J. S. Cloning of a phospholipase A2-activating protein. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5418–5422. doi: 10.1073/pnas.88.12.5418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eklund S., Cassuto J., Jodal M., Lundgren O. The involvement of the enteric nervous system in the intestinal secretion evoked by cyclic adenosine 3'5'-monophosphate. Acta Physiol Scand. 1984 Feb;120(2):311–316. doi: 10.1111/j.1748-1716.1984.tb00139.x. [DOI] [PubMed] [Google Scholar]
  15. Finkelstein R. A., Jehl J. J., Goth A. Pathogenesis of experimental cholera: choleragen-induced rat foot edema; a method of screening anticholera drugs. Proc Soc Exp Biol Med. 1969 Dec;132(3):835–840. doi: 10.3181/00379727-132-34318. [DOI] [PubMed] [Google Scholar]
  16. Giannella R. A., Formal S. B., Dammin G. J., Collins H. Pathogenesis of salmonellosis. Studies of fluid secretion, mucosal invasion, and morphologic reaction in the rabbit ileum. J Clin Invest. 1973 Feb;52(2):441–453. doi: 10.1172/JCI107201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grayer D. T., Serebro H. A., Iber F. L., Hendrix T. R. Effect of cycloheximide on unidirectional sodium fluxes in the jejunum after cholera exotoxin exposure. Gastroenterology. 1970 Jun;58(6):815–819. [PubMed] [Google Scholar]
  18. Kimberg D. V., Field M., Gershon E., Schooley R. T., Henderson A. Effects of cycloheximide on the response of intestinal mucosa to cholera enterotoxin. J Clin Invest. 1973 Jun;52(6):1376–1383. doi: 10.1172/JCI107310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lexomboon U., Goth A., Finkelstein R. A. Applications of the mouse foot edema test in evaluation of anti-cholera drugs. Res Commun Chem Pathol Pharmacol. 1971 Mar;2(2):245–259. [PubMed] [Google Scholar]
  20. Moritz M., Iber F. L., Moore E. W. Rabbit cholera: effects of cycloheximide on net water and ion fluxes and transmural electric potentials. Gastroenterology. 1972 Jul;63(1):76–82. [PubMed] [Google Scholar]
  21. Peitsch M. C., Borner C., Tschopp J. Sequence similarity of phospholipase A2 activating protein and the G protein beta-subunits: a new concept of effector protein activation in signal transduction? Trends Biochem Sci. 1993 Aug;18(8):292–293. doi: 10.1016/0968-0004(93)90038-o. [DOI] [PubMed] [Google Scholar]
  22. Peterson J. W., Berg W. D., Jr, Coppenhaver D. H. Synthesis of protein in intestinal cells exposed to cholera toxin. Proc Soc Exp Biol Med. 1987 Nov;186(2):174–182. doi: 10.3181/00379727-186-42599. [DOI] [PubMed] [Google Scholar]
  23. Peterson J. W., Cantu J., Duncan S., Chopra A. K. Molecular mediators formed in the small intestine in response to cholera toxin. J Diarrhoeal Dis Res. 1993 Dec;11(4):227–234. [PubMed] [Google Scholar]
  24. Peterson J. W., Jackson C. A., Reitmeyer J. C. Synthesis of prostaglandins in cholera toxin-treated Chinese hamster ovary cells. Microb Pathog. 1990 Nov;9(5):345–353. doi: 10.1016/0882-4010(90)90068-2. [DOI] [PubMed] [Google Scholar]
  25. Peterson J. W., Lu Y., Duncan S., Cantu J., Chopra A. K. Interactions of intestinal mediators in the mode of action of cholera toxin. J Med Microbiol. 1994 Jul;41(1):3–9. doi: 10.1099/00222615-41-1-3. [DOI] [PubMed] [Google Scholar]
  26. Peterson J. W., Molina N. C., Houston C. W., Fader R. C. Elevated cAMP in intestinal epithelial cells during experimental cholera and salmonellosis. Toxicon. 1983;21(6):761–775. doi: 10.1016/0041-0101(83)90065-x. [DOI] [PubMed] [Google Scholar]
  27. Peterson J. W., Ochoa L. G. Role of prostaglandins and cAMP in the secretory effects of cholera toxin. Science. 1989 Aug 25;245(4920):857–859. doi: 10.1126/science.2549637. [DOI] [PubMed] [Google Scholar]
  28. Peterson J. W., Reitmeyer J. C., Jackson C. A., Ansari G. A. Protein synthesis is required for cholera toxin-induced stimulation of arachidonic acid metabolism. Biochim Biophys Acta. 1991 Mar 19;1092(1):79–84. doi: 10.1016/0167-4889(91)90179-2. [DOI] [PubMed] [Google Scholar]
  29. Prasad R., Chopra A. K., Chary P., Peterson J. W. Expression and characterization of the cloned Salmonella typhimurium enterotoxin. Microb Pathog. 1992 Aug;13(2):109–121. doi: 10.1016/0882-4010(92)90071-u. [DOI] [PubMed] [Google Scholar]
  30. Prasad R., Chopra A. K., Peterson J. W., Pericas R., Houston C. W. Biological and immunological characterization of a cloned cholera toxin-like enterotoxin from Salmonella typhimurium. Microb Pathog. 1990 Nov;9(5):315–329. doi: 10.1016/0882-4010(90)90066-y. [DOI] [PubMed] [Google Scholar]
  31. Reitmeyer J. C., Peterson J. W. Stimulatory effects of cholera toxin on arachidonic acid metabolism in Chinese hamster ovary cells. Proc Soc Exp Biol Med. 1990 Mar;193(3):181–184. doi: 10.3181/00379727-193-43022. [DOI] [PubMed] [Google Scholar]
  32. Serebro H. A., Iber F. L., Yardley J. H., Hendrix T. R. Inhibition of cholera toxin action in the rabbit by cycloheximide. Gastroenterology. 1969 Mar;56(3):506–511. [PubMed] [Google Scholar]
  33. Speelman P., Rabbani G. H., Bukhave K., Rask-Madsen J. Increased jejunal prostaglandin E2 concentrations in patients with acute cholera. Gut. 1985 Feb;26(2):188–193. doi: 10.1136/gut.26.2.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Van Loon F. P., Rabbani G. H., Bukhave K., Rask-Madsen J. Indomethacin decreases jejunal fluid secretion in addition to luminal release of prostaglandin E2 in patients with acute cholera. Gut. 1992 May;33(5):643–645. doi: 10.1136/gut.33.5.643. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES