Skip to main content
Occupational and Environmental Medicine logoLink to Occupational and Environmental Medicine
. 2003 Mar;60(3):201–206. doi: 10.1136/oem.60.3.201

Radiographic (ILO) readings predict arterial oxygen desaturation during exercise in subjects with asbestosis

Y Lee 1, B Singh 1, S Pang 1, N H de Klerk 1, D Hillman 1, A Musk 1
PMCID: PMC1740487  PMID: 12598668

Abstract

Background: Exercise impairment is common in subjects with asbestosis. Arterial oxygen desaturation during exercise is an important contributor to exercise limitation. The International Labour Office (ILO) classification of plain chest radiographs correlates with resting pulmonary function, but its value in predicting abnormal ventilatory responses to exercise, including desaturation, has not been explored.

Aims: To determine in subjects with asbestosis (1) if radiographic profusion scores and the extent of small irregular shadows on plain chest radiographs correlate with resting lung function and abnormal ventilatory responses to exercise; and (2) if radiographic scores add value to resting lung function tests in predicting abnormal ventilatory responses to exercise.

Methods: Thirty eight male subjects with asbestosis were included. Plain chest radiographs were read according to the ILO classification independently by three observers. All subjects underwent assessment of lung function and an incremental exercise test.

Results: Profusion scores and number of affected zones correlated significantly with the percentage predicted values of single breath diffusing capacity (DLCO), forced vital capacity (FVC), and total lung capacity (TLC). Arterial oxygen desaturation occurred in 29% of the subjects. The severity of desaturation correlated significantly with profusion and the number of affected zones. The combined use of number of affected zones, FEV1/FVC ratio and DLCO predicted desaturation during exercise with an explained variance of 41%. VO2max was significantly related only to DLCO but was not predicted by the ILO score.

Conclusion: Arterial oxygen desaturation correlated with the profusion and extent of parenchymal abnormality on chest radiographs. The addition of morphological indices to physiological measurements is valuable for predicting oxygen desaturation during exercise but not for VO2max. Refinement of the radiographic scoring system and the addition of more sophisticated imaging techniques may further improve the predictive power.

Full Text

The Full Text of this article is available as a PDF (158.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agustí C., Xaubet A., Agustí A. G., Roca J., Ramirez J., Rodriguez-Roisin R. Clinical and functional assessment of patients with idiopathic pulmonary fibrosis: results of a 3 year follow-up. Eur Respir J. 1994 Apr;7(4):643–650. doi: 10.1183/09031936.94.07040643. [DOI] [PubMed] [Google Scholar]
  2. Anderson S. D., Bye P. T. Exercise testing in the evaluation of diffuse interstitial lung disease. Aust N Z J Med. 1984 Oct;14(5 Suppl 3):762–768. [PubMed] [Google Scholar]
  3. Astrand I., Astrand P. O., Hallbäck I., Kilbom A. Reduction in maximal oxygen uptake with age. J Appl Physiol. 1973 Nov;35(5):649–654. doi: 10.1152/jappl.1973.35.5.649. [DOI] [PubMed] [Google Scholar]
  4. Blackie S. P., Fairbarn M. S., McElvaney G. N., Morrison N. J., Wilcox P. G., Pardy R. L. Prediction of maximal oxygen uptake and power during cycle ergometry in subjects older than 55 years of age. Am Rev Respir Dis. 1989 Jun;139(6):1424–1429. doi: 10.1164/ajrccm/139.6.1424. [DOI] [PubMed] [Google Scholar]
  5. Bourbeau J., Ernst P., Chrome J., Armstrong B., Becklake M. R. The relationship between respiratory impairment and asbestos-related pleural abnormality in an active work force. Am Rev Respir Dis. 1990 Oct;142(4):837–842. doi: 10.1164/ajrccm/142.4.837. [DOI] [PubMed] [Google Scholar]
  6. Chung F., Dean E. Pathophysiology and cardiorespiratory consequences of interstitial lung disease--review and clinical implications: a special communication. Phys Ther. 1989 Nov;69(11):956–966. doi: 10.1093/ptj/69.11.956. [DOI] [PubMed] [Google Scholar]
  7. Cotes J. E., King B. Relationship of lung function to radiographic reading (ILO) in patients with asbestos related lung disease. Thorax. 1988 Oct;43(10):777–783. doi: 10.1136/thx.43.10.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cotes J. E., Rossiter C. E., Higgins I. T., Gilson J. C. Average normal values for the forced expiratory volume in white Caucasian males. Br Med J. 1966 Apr 23;1(5494):1016–1019. doi: 10.1136/bmj.1.5494.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cotes J. E., Zejda J., King B. Lung function impairment as a guide to exercise limitation in work-related lung disorders. Am Rev Respir Dis. 1988 May;137(5):1089–1093. doi: 10.1164/ajrccm/137.5.1089. [DOI] [PubMed] [Google Scholar]
  10. Crapo R. O., Morris A. H., Clayton P. D., Nixon C. R. Lung volumes in healthy nonsmoking adults. Bull Eur Physiopathol Respir. 1982 May-Jun;18(3):419–425. [PubMed] [Google Scholar]
  11. Finucane K. E., Mead J. Estimation of alveolar pressure during forced oscillation of the respiratory system. J Appl Physiol. 1975 Mar;38(3):531–537. doi: 10.1152/jappl.1975.38.3.531. [DOI] [PubMed] [Google Scholar]
  12. Harris-Eze A. O., Sridhar G., Clemens R. E., Zintel T. A., Gallagher C. G., Marciniuk D. D. Role of hypoxemia and pulmonary mechanics in exercise limitation in interstitial lung disease. Am J Respir Crit Care Med. 1996 Oct;154(4 Pt 1):994–1001. doi: 10.1164/ajrccm.154.4.8887597. [DOI] [PubMed] [Google Scholar]
  13. Hillerdal G., Malmberg P., Hemmingsson A. Asbestos-related lesions of the pleura: parietal plaques compared to diffuse thickening studied with chest roentgenography, computed tomography, lung function, and gas exchange. Am J Ind Med. 1990;18(6):627–639. doi: 10.1002/ajim.4700180602. [DOI] [PubMed] [Google Scholar]
  14. Jones N. L., Makrides L., Hitchcock C., Chypchar T., McCartney N. Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis. 1985 May;131(5):700–708. doi: 10.1164/arrd.1985.131.5.700. [DOI] [PubMed] [Google Scholar]
  15. KORY R. C., CALLAHAN R., BOREN H. G., SYNER J. C. The Veterans Administration-Army cooperative study of pulmonary function. I. Clinical spirometry in normal men. Am J Med. 1961 Feb;30:243–258. doi: 10.1016/0002-9343(61)90096-1. [DOI] [PubMed] [Google Scholar]
  16. Kilburn K. H., Warshaw R. H. Severity of pulmonary asbestosis as classified by International Labour Organisation profusion of irregular opacities in 8749 asbestos-exposed American workers. Those who never smoked compared with those who ever smoked. Arch Intern Med. 1992 Feb;152(2):325–327. [PubMed] [Google Scholar]
  17. Lee Y. C., Runnion C. K., Pang S. C., de Klerk N. H., Musk A. W. Increased body mass index is related to apparent circumscribed pleural thickening on plain chest radiographs. Am J Ind Med. 2001 Jan;39(1):112–116. doi: 10.1002/1097-0274(200101)39:1<112::aid-ajim11>3.0.co;2-g. [DOI] [PubMed] [Google Scholar]
  18. Markos J., Musk A. W., Finucane K. E. Functional similarities of asbestosis and cryptogenic fibrosing alveolitis. Thorax. 1988 Sep;43(9):708–714. doi: 10.1136/thx.43.9.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miller A., Lilis R., Godbold J., Wu X. Relation of spirometric function to radiographic interstitial fibrosis in two large workforces exposed to asbestos: an evaluation of the ILO profusion score. Occup Environ Med. 1996 Dec;53(12):808–812. doi: 10.1136/oem.53.12.808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Miller A., Thornton J. C., Warshaw R., Anderson H., Teirstein A. S., Selikoff I. J. Single breath diffusing capacity in a representative sample of the population of Michigan, a large industrial state. Predicted values, lower limits of normal, and frequencies of abnormality by smoking history. Am Rev Respir Dis. 1983 Mar;127(3):270–277. doi: 10.1164/arrd.1983.127.3.270. [DOI] [PubMed] [Google Scholar]
  21. Rosenberg D. M. Asbestos-related disorders. A realistic perspective. Chest. 1997 May;111(5):1424–1426. doi: 10.1378/chest.111.5.1424. [DOI] [PubMed] [Google Scholar]
  22. Rosenstock L., Barnhart S., Heyer N. J., Pierson D. J., Hudson L. D. The relation among pulmonary function, chest roentgenographic abnormalities, and smoking status in an asbestos-exposed cohort. Am Rev Respir Dis. 1988 Aug;138(2):272–277. doi: 10.1164/ajrccm/138.2.272. [DOI] [PubMed] [Google Scholar]
  23. Staples C. A. Computed tomography in the evaluation of benign asbestos-related disorders. Radiol Clin North Am. 1992 Nov;30(6):1191–1207. [PubMed] [Google Scholar]
  24. Sue D. Y. Exercise testing in the evaluation of impairment and disability. Clin Chest Med. 1994 Jun;15(2):369–387. [PubMed] [Google Scholar]
  25. Wagner G. R. Asbestosis and silicosis. Lancet. 1997 May 3;349(9061):1311–1315. doi: 10.1016/S0140-6736(96)07336-9. [DOI] [PubMed] [Google Scholar]
  26. Wells A. U., Hansell D. M., Rubens M. B., Cailes J. B., Black C. M., du Bois R. M. Functional impairment in lone cryptogenic fibrosing alveolitis and fibrosing alveolitis associated with systemic sclerosis: a comparison. Am J Respir Crit Care Med. 1997 May;155(5):1657–1664. doi: 10.1164/ajrccm.155.5.9154872. [DOI] [PubMed] [Google Scholar]
  27. Wells A. U., Hansell D. M., Rubens M. B., King A. D., Cramer D., Black C. M., du Bois R. M. Fibrosing alveolitis in systemic sclerosis: indices of lung function in relation to extent of disease on computed tomography. Arthritis Rheum. 1997 Jul;40(7):1229–1236. doi: 10.1002/1529-0131(199707)40:7<1229::AID-ART6>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  28. Wells A. U., King A. D., Rubens M. B., Cramer D., du Bois R. M., Hansell D. M. Lone cryptogenic fibrosing alveolitis: a functional-morphologic correlation based on extent of disease on thin-section computed tomography. Am J Respir Crit Care Med. 1997 Apr;155(4):1367–1375. doi: 10.1164/ajrccm.155.4.9105081. [DOI] [PubMed] [Google Scholar]
  29. Wiedemann H. P., Gee J. B., Balmes J. R., Loke J. Exercise testing in occupational lung diseases. Clin Chest Med. 1984 Mar;5(1):157–171. [PubMed] [Google Scholar]
  30. de Klerk N. H., Musk A. W., Armstrong B. K., Hobbs M. S. Smoking, exposure to crocidolite, and the incidence of lung cancer and asbestosis. Br J Ind Med. 1991 Jun;48(6):412–417. doi: 10.1136/oem.48.6.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. de Klerk N. H., Musk A. W., Cookson W. O., Glancy J. J., Hobbs M. S. Radiographic abnormalities and mortality in subjects with exposure to crocidolite. Br J Ind Med. 1993 Oct;50(10):902–906. doi: 10.1136/oem.50.10.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. de Klerk N. H., Musk A. W., James A., Glancy J. J., Cookson W. O. Comparison of chest radiograph reading methods for assessing progress of pneumoconiosis over 10 years in Wittenoom crocidolite workers. Br J Ind Med. 1990 Feb;47(2):127–131. doi: 10.1136/oem.47.2.127. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Occupational and Environmental Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES