Skip to main content
Occupational and Environmental Medicine logoLink to Occupational and Environmental Medicine
. 2003 Aug;60(8):551–562. doi: 10.1136/oem.60.8.551

Associations of lead biomarkers with renal function in Korean lead workers

V Weaver 1, B Lee 1, K Ahn 1, G Lee 1, A Todd 1, W Stewart 1, J Wen 1, D Simon 1, P Parsons 1, B Schwartz 1
PMCID: PMC1740600  PMID: 12883015

Abstract

Aims: To compare associations of lead biomarkers with renal function in current and former lead workers.

Methods: Cross sectional analysis of first year results from a longitudinal study of 803 lead workers and 135 controls in South Korea. Clinical renal function was assessed by blood urea nitrogen (BUN), serum creatinine, and measured and calculated creatinine clearance. Urinary N-acetyl-ß-D-glucosaminidase (NAG) and retinol-binding protein were also measured.

Results: Mean (SD) tibia lead, blood lead, and DMSA chelatable lead levels in lead workers were 37.2 (40.4) µg/g bone mineral, 32.0 (15.0) µg/dl, and 767.8 (862.1) µg/g creatinine, respectively. Higher lead measures were associated with worse renal function in 16/42 models. When influential outliers were removed, higher lead measures remained associated with worse renal function in nine models. An additional five associations were in the opposite direction. Effect modification by age was observed. In 3/16 models, associations between higher lead measures and worse clinical renal function in participants in the oldest age tertile were significantly different from associations in those in the youngest age tertile which were in the opposite direction. Mean urinary cadmium (CdU) was 1.1 µg/g creatinine (n = 191). Higher CdU levels were associated with higher NAG.

Conclusions: These data suggest that lead has an adverse effect on renal function in the moderate dose range, particularly in older workers. Associations between higher lead measures and lower BUN and serum creatinine and higher creatinine clearances may represent lead induced hyperfiltration. Environmental cadmium may also have an adverse renal impact, at least on NAG.

Full Text

The Full Text of this article is available as a PDF (433.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allon M. Renal abnormalities in sickle cell disease. Arch Intern Med. 1990 Mar;150(3):501–504. [PubMed] [Google Scholar]
  2. Batuman V. Lead nephropathy, gout, and hypertension. Am J Med Sci. 1993 Apr;305(4):241–247. doi: 10.1097/00000441-199304000-00008. [DOI] [PubMed] [Google Scholar]
  3. Bernard A., Thielemans N., Roels H., Lauwerys R. Association between NAG-B and cadmium in urine with no evidence of a threshold. Occup Environ Med. 1995 Mar;52(3):177–180. doi: 10.1136/oem.52.3.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blumberg W. E., Eisinger J., Lamola A. A., Zuckerman D. M. Zinc protoporphyrin level in blood determined by a portable hematofluorometer: a screening device for lead poisoning. J Lab Clin Med. 1977 Apr;89(4):712–723. [PubMed] [Google Scholar]
  5. Brenner B. M., Lawler E. V., Mackenzie H. S. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 1996 Jun;49(6):1774–1777. doi: 10.1038/ki.1996.265. [DOI] [PubMed] [Google Scholar]
  6. Buchet J. P., Lauwerys R., Roels H., Bernard A., Bruaux P., Claeys F., Ducoffre G., de Plaen P., Staessen J., Amery A. Renal effects of cadmium body burden of the general population. Lancet. 1990 Sep 22;336(8717):699–702. doi: 10.1016/0140-6736(90)92201-r. [DOI] [PubMed] [Google Scholar]
  7. Cockcroft D. W., Gault M. H. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41. doi: 10.1159/000180580. [DOI] [PubMed] [Google Scholar]
  8. Cárdenas A., Roels H., Bernard A. M., Barbon R., Buchet J. P., Lauwerys R. R., Roselló J., Ramis I., Mutti A., Franchini I. Markers of early renal changes induced by industrial pollutants. II. Application to workers exposed to lead. Br J Ind Med. 1993 Jan;50(1):28–36. doi: 10.1136/oem.50.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ehrlich R., Robins T., Jordaan E., Miller S., Mbuli S., Selby P., Wynchank S., Cantrell A., De Broe M., D'Haese P. Lead absorption and renal dysfunction in a South African battery factory. Occup Environ Med. 1998 Jul;55(7):453–460. doi: 10.1136/oem.55.7.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gerhardsson L., Chettle D. R., Englyst V., Nordberg G. F., Nyhlin H., Scott M. C., Todd A. C., Vesterberg O. Kidney effects in long term exposed lead smelter workers. Br J Ind Med. 1992 Mar;49(3):186–192. doi: 10.1136/oem.49.3.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hu H. A 50-year follow-up of childhood plumbism. Hypertension, renal function, and hemoglobin levels among survivors. Am J Dis Child. 1991 Jun;145(6):681–687. doi: 10.1001/archpedi.1991.02160060099029. [DOI] [PubMed] [Google Scholar]
  12. Inglis J. A., Henderson D. A., Emmerson B. T. The pathology and pathogenesis of chronic lead nephropathy occurring in Queensland. J Pathol. 1978 Feb;124(2):65–76. doi: 10.1002/path.1711240202. [DOI] [PubMed] [Google Scholar]
  13. Khalil-Manesh F., Gonick H. C., Cohen A. H., Alinovi R., Bergamaschi E., Mutti A., Rosen V. J. Experimental model of lead nephropathy. I. Continuous high-dose lead administration. Kidney Int. 1992 May;41(5):1192–1203. doi: 10.1038/ki.1992.181. [DOI] [PubMed] [Google Scholar]
  14. Kim R., Aro A., Rotnitzky A., Amarasiriwardena C., Hu H. K x-ray fluorescence measurements of bone lead concentration: the analysis of low-level data. Phys Med Biol. 1995 Sep;40(9):1475–1485. doi: 10.1088/0031-9155/40/9/007. [DOI] [PubMed] [Google Scholar]
  15. Kim R., Rotnitsky A., Sparrow D., Weiss S., Wager C., Hu H. A longitudinal study of low-level lead exposure and impairment of renal function. The Normative Aging Study. JAMA. 1996 Apr 17;275(15):1177–1181. [PubMed] [Google Scholar]
  16. Lee B. K., Lee G. S., Stewart W. F., Ahn K. D., Simon D., Kelsey K. T., Todd A. C., Schwartz B. S. Associations of blood pressure and hypertension with lead dose measures and polymorphisms in the vitamin D receptor and delta-aminolevulinic acid dehydratase genes. Environ Health Perspect. 2001 Apr;109(4):383–389. doi: 10.1289/ehp.01109383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lilis R., Valciukas J., Fischbein A., Andrews G., Selikoff I. J., Blumberg W. Renal function impairment in secondary lead smelter workers: correlations with zinc protoporphyrin and blood lead levels. J Environ Pathol Toxicol. 1979 Jul-Aug;2(6):1447–1474. [PubMed] [Google Scholar]
  18. Lin J. L., Ho H. H., Yu C. C. Chelation therapy for patients with elevated body lead burden and progressive renal insufficiency. A randomized, controlled trial. Ann Intern Med. 1999 Jan 5;130(1):7–13. doi: 10.7326/0003-4819-130-1-199901050-00003. [DOI] [PubMed] [Google Scholar]
  19. Lin J. L., Tan D. T., Hsu K. H., Yu C. C. Environmental lead exposure and progressive renal insufficiency. Arch Intern Med. 2001 Jan 22;161(2):264–271. doi: 10.1001/archinte.161.2.264. [DOI] [PubMed] [Google Scholar]
  20. Meyer B. R., Fischbein A., Rosenman K., Lerman Y., Drayer D. E., Reidenberg M. M. Increased urinary enzyme excretion in workers exposed to nephrotoxic chemicals. Am J Med. 1984 Jun;76(6):989–998. doi: 10.1016/0002-9343(84)90847-7. [DOI] [PubMed] [Google Scholar]
  21. Nenov V. D., Taal M. W., Sakharova O. V., Brenner B. M. Multi-hit nature of chronic renal disease. Curr Opin Nephrol Hypertens. 2000 Mar;9(2):85–97. doi: 10.1097/00041552-200003000-00001. [DOI] [PubMed] [Google Scholar]
  22. Oishi H., Nomiyama H., Nomiyama K., Tomokuni K. Fluorometric HPLC determination of delta-aminolevulinic acid (ALA) in the plasma and urine of lead workers: biological indicators of lead exposure. J Anal Toxicol. 1996 Mar-Apr;20(2):106–110. doi: 10.1093/jat/20.2.106. [DOI] [PubMed] [Google Scholar]
  23. Omae K., Sakurai H., Higashi T., Muto T., Ichikawa M., Sasaki N. No adverse effects of lead on renal function in lead-exposed workers. Ind Health. 1990;28(2):77–83. doi: 10.2486/indhealth.28.77. [DOI] [PubMed] [Google Scholar]
  24. Payton M., Hu H., Sparrow D., Weiss S. T. Low-level lead exposure and renal function in the Normative Aging Study. Am J Epidemiol. 1994 Nov 1;140(9):821–829. doi: 10.1093/oxfordjournals.aje.a117330. [DOI] [PubMed] [Google Scholar]
  25. Pergande M., Jung K., Precht S., Fels L. M., Herbort C., Stolte H. Changed excretion of urinary proteins and enzymes by chronic exposure to lead. Nephrol Dial Transplant. 1994;9(6):613–618. doi: 10.1093/ndt/9.6.613. [DOI] [PubMed] [Google Scholar]
  26. Pruszkowska E., Carnrick G. R., Slavin W. Direct determination of cadmium in urine with use of a stabilized temperature platform furnace and Zeeman background correction. Clin Chem. 1983 Mar;29(3):477–480. [PubMed] [Google Scholar]
  27. Ramirez-Cervantes B., Embree J. W., Hine C. H., Nelson K. W., Varner M. O., Putnam R. D. Health assessment of employees with different body burdens of lead. J Occup Med. 1978 Sep;20(9):610–617. doi: 10.1097/00043764-197809000-00009. [DOI] [PubMed] [Google Scholar]
  28. Roels H., Lauwerys R., Konings J., Buchet J. P., Bernard A., Green S., Bradley D., Morgan W., Chettle D. Renal function and hyperfiltration capacity in lead smelter workers with high bone lead. Occup Environ Med. 1994 Aug;51(8):505–512. doi: 10.1136/oem.51.8.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schwartz B. S., Lee B. K., Lee G. S., Stewart W. F., Lee S. S., Hwang K. Y., Ahn K. D., Kim Y. B., Bolla K. I., Simon D. Associations of blood lead, dimercaptosuccinic acid-chelatable lead, and tibia lead with neurobehavioral test scores in South Korean lead workers. Am J Epidemiol. 2001 Mar 1;153(5):453–464. doi: 10.1093/aje/153.5.453. [DOI] [PubMed] [Google Scholar]
  30. Schwartz B. S., Stewart W. F., Todd A. C., Links J. M. Predictors of dimercaptosuccinic acid chelatable lead and tibial lead in former organolead manufacturing workers. Occup Environ Med. 1999 Jan;56(1):22–29. doi: 10.1136/oem.56.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sithisarankul P., Schwartz B. S., Lee B. K., Kelsey K. T., Strickland P. T. Aminolevulinic acid dehydratase genotype mediates plasma levels of the neurotoxin, 5-aminolevulinic acid, in lead-exposed workers. Am J Ind Med. 1997 Jul;32(1):15–20. doi: 10.1002/(sici)1097-0274(199707)32:1<15::aid-ajim2>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  32. Staessen J. A., Lauwerys R. R., Buchet J. P., Bulpitt C. J., Rondia D., Vanrenterghem Y., Amery A. Impairment of renal function with increasing blood lead concentrations in the general population. The Cadmibel Study Group. N Engl J Med. 1992 Jul 16;327(3):151–156. doi: 10.1056/NEJM199207163270303. [DOI] [PubMed] [Google Scholar]
  33. Steenland K., Selevan S., Landrigan P. The mortality of lead smelter workers: an update. Am J Public Health. 1992 Dec;82(12):1641–1644. doi: 10.2105/ajph.82.12.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Todd A. C., McNeill F. E. In vivo measurements of lead in bone using a 109Cd 'spot' source. Basic Life Sci. 1993;60:299–302. doi: 10.1007/978-1-4899-1268-8_66. [DOI] [PubMed] [Google Scholar]
  35. Todd A. C., McNeill F. E., Palethorpe J. E., Peach D. E., Chettle D. R., Tobin M. J., Strosko S. J., Rosen J. C. In vivo X-ray fluorescence of lead in bone using K X-ray excitation with 109Cd sources: radiation dosimetry studies. Environ Res. 1992 Apr;57(2):117–132. doi: 10.1016/s0013-9351(05)80073-8. [DOI] [PubMed] [Google Scholar]
  36. Topping M. D., Forster H. W., Dolman C., Luczynska C. M., Bernard A. M. Measurement of urinary retinol-binding protein by enzyme-linked immunosorbent assay, and its application to detection of tubular proteinuria. Clin Chem. 1986 Oct;32(10):1863–1866. [PubMed] [Google Scholar]
  37. Verschoor M., Wibowo A., Herber R., van Hemmen J., Zielhuis R. Influence of occupational low-level lead exposure on renal parameters. Am J Ind Med. 1987;12(4):341–351. doi: 10.1002/ajim.4700120402. [DOI] [PubMed] [Google Scholar]
  38. Weaver V. M., Buckley T., Groopman J. D. Lack of specificity of trans,trans-muconic acid as a benzene biomarker after ingestion of sorbic acid-preserved foods. Cancer Epidemiol Biomarkers Prev. 2000 Jul;9(7):749–755. [PubMed] [Google Scholar]
  39. Wedeen R. P., Malik D. K., Batuman V. Detection and treatment of occupational lead nephropathy. Arch Intern Med. 1979 Jan;139(1):53–57. [PubMed] [Google Scholar]
  40. Yuen C. T., Kind P. R., Price R. G., Praill P. F., Richardson A. C. Colorimetric assay for N-acetyl-beta-D-glucosaminidase (NAG) in pathological urine using the omega-nitrostyryl substrate: the development of a kit and the comparison of manual procedure with the automated fluorimetric method. Ann Clin Biochem. 1984 Jul;21(Pt 4):295–300. doi: 10.1177/000456328402100411. [DOI] [PubMed] [Google Scholar]
  41. dos Santos A. C., Colacciopo S., Dal Bó C. M., dos Santos N. A. Occupational exposure to lead, kidney function tests, and blood pressure. Am J Ind Med. 1994 Nov;26(5):635–643. doi: 10.1002/ajim.4700260506. [DOI] [PubMed] [Google Scholar]

Articles from Occupational and Environmental Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES