Abstract
Previous studies have shown that the physical, biochemical, and antigenic properties of the bacterial outer membrane are profoundly influenced by the growth environment. In the present study, the effects of growth in hemin-replete (H+) and hemin-depleted (H-) media on the lipopolysaccharide (LPS) of the oral pathogen Porphyromonas gingivalis were investigated. Our studies show that LPS from P. gingivalis cultured in H+ media (H+LPS) expressed additional low-molecular-mass antigens, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analysis. Particularly evident was a 26-kDa antigen (26 LPSC) that was lost from the LPS upon transfer of P. gingivalis into H- media. The loss of the 26 LPSC was accompanied by a marked reduction in the hemin-binding capacity of the LPS. The 26 LPSC was refractory to Coomassie blue staining and proteinase K digestion. H+LPS from strain W50/BE1, a nonpigmented pleiotropic strain, lacked the 26 LPSC and did not bind hemin. Polyclonal antiserum raised to whole-cell antigens of P. gingivalis A7436, W83, and HG405 grown in H+ media, but not in H- media, recognized the 26 LPSC in the purified H+LPS from any of the three strains. The immunoreactivities of sera from humans with (n = 24) or without (n = 25) periodontitis to the 26 LPSC and other H+LPS determinants were analyzed by Western blot. Overall, 75% of adult periodontitis patient sera reacted with multiple bands in the H+LPS stepladder, particularly in the range of 14 to 27 kDa. In contrast, only 20% of control sera reacted faintly with H+LPS bands in the range 27 to 34 kDa. The 26 LPSC was recognized by over 40% of sera from adult patients with periodontitis and none of the healthy control sera. Taken together, these results suggest that the antigenicity and hemin-binding properties of P. gingivalis LPS can be modified by growth in H+ media.
Full Text
The Full Text of this article is available as a PDF (700.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bramanti T. E., Holt S. C. Localization of a Porphyromonas gingivalis 26-kilodalton heat-modifiable, hemin-regulated surface protein which translocates across the outer membrane. J Bacteriol. 1992 Sep;174(18):5827–5839. doi: 10.1128/jb.174.18.5827-5839.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bélanger M., Bégin C., Jacques M. Lipopolysaccharides of Actinobacillus pleuropneumoniae bind pig hemoglobin. Infect Immun. 1995 Feb;63(2):656–662. doi: 10.1128/iai.63.2.656-662.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Camprubi S., Smith M. A., Tomas J. M., Williams P. Modulation of surface antigen expression by Klebsiella pneumoniae in response to growth environment. Microb Pathog. 1992 Aug;13(2):145–155. doi: 10.1016/0882-4010(92)90074-x. [DOI] [PubMed] [Google Scholar]
- Cutler C. W., Kalmar J. R., Genco C. A. Pathogenic strategies of the oral anaerobe, Porphyromonas gingivalis. Trends Microbiol. 1995 Feb;3(2):45–51. doi: 10.1016/s0966-842x(00)88874-5. [DOI] [PubMed] [Google Scholar]
- Davies R. L., Parton R., Coote J. G., Gibbs H. A., Freer J. H. Outer-membrane protein and lipopolysaccharide variation in Pasteurella haemolytica serotype A1 under different growth conditions. J Gen Microbiol. 1992 May;138(5):909–922. doi: 10.1099/00221287-138-5-909. [DOI] [PubMed] [Google Scholar]
- Duncan R. L., Jr, Hoffman J., Tesh V. L., Morrison D. C. Immunologic activity of lipopolysaccharides released from macrophages after the uptake of intact E. coli in vitro. J Immunol. 1986 Apr 15;136(8):2924–2929. [PubMed] [Google Scholar]
- Dzink J. L., Gibbons R. J., Childs W. C., 3rd, Socransky S. S. The predominant cultivable microbiota of crevicular epithelial cells. Oral Microbiol Immunol. 1989 Mar;4(1):1–5. doi: 10.1111/j.1399-302x.1989.tb00398.x. [DOI] [PubMed] [Google Scholar]
- Ebersole J. L., Frey D. E., Taubman M. A., Smith D. J. An ELISA for measuring serum antibodies to Actinobacillus actinomycetemcomitans. J Periodontal Res. 1980 Nov;15(6):621–632. doi: 10.1111/j.1600-0765.1980.tb00321.x. [DOI] [PubMed] [Google Scholar]
- Egelberg J. The blood vessels of the dento-gingival junction. J Periodontal Res. 1966;1(3):163–179. doi: 10.1111/j.1600-0765.1966.tb01857.x. [DOI] [PubMed] [Google Scholar]
- Galdiero F., Sommese L., Scarfogliero P., Galdiero M. Biological activities--lethality, Shwartzman reaction and pyrogenicity--of Salmonella typhimurium porins. Microb Pathog. 1994 Feb;16(2):111–119. doi: 10.1006/mpat.1994.1012. [DOI] [PubMed] [Google Scholar]
- Genco C. A., Odusanya B. M., Brown G. Binding and accumulation of hemin in Porphyromonas gingivalis are induced by hemin. Infect Immun. 1994 Jul;62(7):2885–2892. doi: 10.1128/iai.62.7.2885-2892.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Genco C. A. Regulation of hemin and iron transport in Porphyromonas gingivalis. Adv Dent Res. 1995 Feb;9(1):41–47. doi: 10.1177/08959374950090010801. [DOI] [PubMed] [Google Scholar]
- Grenier D. Hemin-binding property of Porphyromonas gingivalis outer membranes. FEMS Microbiol Lett. 1991 Jan 1;61(1):45–49. doi: 10.1016/0378-1097(91)90011-x. [DOI] [PubMed] [Google Scholar]
- Hitchcock P. J., Brown T. M. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol. 1983 Apr;154(1):269–277. doi: 10.1128/jb.154.1.269-277.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawaoka Y., Otsuki K., Tsubokura M. Growth temperature-dependent variation in the bacteriophage-inactivating capacity and antigenicity of Yersinia enterocolitica lipopolysaccharide. J Gen Microbiol. 1983 Sep;129(9):2739–2747. doi: 10.1099/00221287-129-9-2739. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Mathison J. C., Tobias P. S., Wolfson E., Ulevitch R. J. Plasma lipopolysaccharide (LPS)-binding protein. A key component in macrophage recognition of gram-negative LPS. J Immunol. 1992 Jul 1;149(1):200–206. [PubMed] [Google Scholar]
- Mettraux G. R., Gusberti F. A., Graf H. Oxygen tension (pO2) in untreated human periodontal pockets. J Periodontol. 1984 Sep;55(9):516–521. doi: 10.1902/jop.1984.55.9.516. [DOI] [PubMed] [Google Scholar]
- Mukherjee S. The role of crevicular fluid iron in periodontal disease. J Periodontol. 1985 Nov;56(11 Suppl):22–27. doi: 10.1902/jop.1985.56.11s.22. [DOI] [PubMed] [Google Scholar]
- Parent R., Mouton C., Lamonde L., Bouchard D. Human and animal serotypes of Bacteroides gingivalis defined by crossed immunoelectrophoresis. Infect Immun. 1986 Mar;51(3):909–918. doi: 10.1128/iai.51.3.909-918.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth R. I., Levin F. C., Levin J. Distribution of bacterial endotoxin in human and rabbit blood and effects of stroma-free hemoglobin. Infect Immun. 1993 Aug;61(8):3209–3215. doi: 10.1128/iai.61.8.3209-3215.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai C. M., Boykins R., Frasch C. E. Heterogeneity and variation among Neisseria meningitidis lipopolysaccharides. J Bacteriol. 1983 Aug;155(2):498–504. doi: 10.1128/jb.155.2.498-504.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
- Ulevitch R. J., Wolfson N., Virca G. D., Kim S., Kline L., Mathison J. C. Macrophages regulate the host response to bacterial lipopolysaccharides. Prog Clin Biol Res. 1989;299:193–202. [PubMed] [Google Scholar]
- Weiss J., Hutzler M., Kao L. Environmental modulation of lipopolysaccharide chain length alters the sensitivity of Escherichia coli to the neutrophil bactericidal/permeability-increasing protein. Infect Immun. 1986 Feb;51(2):594–599. doi: 10.1128/iai.51.2.594-599.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
