Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Jul;64(7):2371–2380. doi: 10.1128/iai.64.7.2371-2380.1996

Bacterially induced bone destruction: mechanisms and misconceptions.

S P Nair 1, S Meghji 1, M Wilson 1, K Reddi 1, P White 1, B Henderson 1
PMCID: PMC174085  PMID: 8698454

Abstract

Normal bone remodelling requires the coordinated regulation of the genesis and activity of osteoblast and osteoclast lineages. Any interference with these integrated cellular systems can result in dysregulation of remodelling with the consequent loss of bone matrix. Bacteria are important causes of bone pathology in common conditions such as periodontitis, dental cysts, bacterial arthritis, and osteomyelitis. It is now established that many of the bacteria implicated in bone diseases contain or produce molecules with potent effects on bone cells. Some of these molecules, such as components of the gram-positive cell walls (lipoteichoic acids), are weak stimulators of bone resorption in vitro, while others (PMT, cpn60) are as active as the most active mammalian osteolytic factors such as cytokines like IL-1 and TNF. The complexity of the integration of bone cell lineage development means that there are still question marks over the mechanism of action of many well-known bone-modulatory molecules such as parathyroid hormone. The key questions which must be asked of the now-recognized bacterial bone-modulatory molecules are as follows: (i) what cell population do they bind to, (ii) what is the nature of the receptor and postreceptor events, and (iii) is their action direct or dependent on the induction of secondary extracellular bone-modulating factors such as cytokines, eicosanoids, etc. In the case of LPS, this ubiquitous gram-negative polymer probably binds to osteoblasts or other cells in bone through the CD14 receptor and stimulates them to release cytokines and eicosanoids which then induce the recruitment and activation of osteoclasts. This explains the inhibitor effects of nonsteroidal and anticytokine agents on LPS-induced bone resorption. However, other bacterial factors such as the potent toxin PMT may act by blocking the normal maturation pathway of the osteoblast lineage, thus inducing dysregulation in the tightly regulated process of resorption and replacement of bone matrix. At the present time, it is not possible to define a general mechanism by which bacteria promote loss of bone matrix. Many bacteria are capable of stimulating bone matrix loss, and the information available would suggest that each organism possesses different factors which interact with bone in different ways. With the rapid increase in antibiotic resistance, particularly with Staphylococcus aureus and M. tuberculosis, organisms responsible for much bone pathology in developed countries only two generations ago, we would urge that much greater attention should be focused on the problem of bacterially induced bone remodelling in order to define pathogenetic mechanisms which could be therapeutic targets for the development of new treatment modalities.

Full Text

The Full Text of this article is available as a PDF (302.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackermann M. R., Adams D. A., Gerken L. L., Beckman M. J., Rimler R. B. Purified Pasteurella multocida protein toxin reduces acid phosphatase-positive osteoclasts in the ventral nasal concha of gnotobiotic pigs. Calcif Tissue Int. 1993 Jun;52(6):455–459. doi: 10.1007/BF00571336. [DOI] [PubMed] [Google Scholar]
  2. Ackermann M. R., Rimler R. B., Thurston J. R. Experimental model of atrophic rhinitis in gnotobiotic pigs. Infect Immun. 1991 Oct;59(10):3626–3629. doi: 10.1128/iai.59.10.3626-3629.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker G. L., Oddis C. V., Medsger T. A., Jr Pasteurella multocida polyarticular septic arthritis. J Rheumatol. 1987 Apr;14(2):355–357. [PubMed] [Google Scholar]
  4. Boyce B. F., Yoneda T., Lowe C., Soriano P., Mundy G. R. Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest. 1992 Oct;90(4):1622–1627. doi: 10.1172/JCI116032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brandi M. L., Hukkanen M., Umeda T., Moradi-Bidhendi N., Bianchi S., Gross S. S., Polak J. M., MacIntyre I. Bidirectional regulation of osteoclast function by nitric oxide synthase isoforms. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2954–2958. doi: 10.1073/pnas.92.7.2954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coates A. R., Shinnick T. M., Ellis R. J. Chaperonin nomenclature. Mol Microbiol. 1993 May;8(4):787–787. doi: 10.1111/j.1365-2958.1993.tb01624.x. [DOI] [PubMed] [Google Scholar]
  7. Damoulis P. D., Hauschka P. V. Cytokines induce nitric oxide production in mouse osteoblasts. Biochem Biophys Res Commun. 1994 Jun 15;201(2):924–931. doi: 10.1006/bbrc.1994.1790. [DOI] [PubMed] [Google Scholar]
  8. Dewhirst F. E. N-acetyl muramyl dipeptide stimulation of bone resorption in tissue culture. Infect Immun. 1982 Jan;35(1):133–137. doi: 10.1128/iai.35.1.133-137.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dominick M. A., Rimler R. B. Turbinate osteoporosis in pigs following intranasal inoculation of purified Pasteurella toxin: histomorphometric and ultrastructural studies. Vet Pathol. 1988 Jan;25(1):17–27. doi: 10.1177/030098588802500103. [DOI] [PubMed] [Google Scholar]
  10. Duncan J. R., Ross R. F., Switzer W. P., Ramsey F. K. Pathology of experimental Bordetella bronchiseptica infection in swine: atrophic rhinitis. Am J Vet Res. 1966 Mar;27(117):457–466. [PubMed] [Google Scholar]
  11. Evans R. T., Klausen B., Genco R. J. Immunization with fimbrial protein and peptide protects against Porphyromonas gingivalis-induced periodontal tissue destruction. Adv Exp Med Biol. 1992;327:255–262. doi: 10.1007/978-1-4615-3410-5_27. [DOI] [PubMed] [Google Scholar]
  12. Felix R., Fleisch H., Frandsen P. L. Effect of Pasteurella multocida toxin on bone resorption in vitro. Infect Immun. 1992 Dec;60(12):4984–4988. doi: 10.1128/iai.60.12.4984-4988.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Felix R., Hofstetter W., Wetterwald A., Cecchini M. G., Fleisch H. Role of colony-stimulating factor-1 in bone metabolism. J Cell Biochem. 1994 Jul;55(3):340–349. doi: 10.1002/jcb.240550311. [DOI] [PubMed] [Google Scholar]
  14. Franchi-Miller C., Saffar J. L. The 5-lipoxygenase inhibitor BWA4C impairs osteoclastic resorption in a synchronized model of bone remodeling. Bone. 1995 Aug;17(2):185–191. doi: 10.1016/s8756-3282(95)00173-5. [DOI] [PubMed] [Google Scholar]
  15. Gallwitz W. E., Mundy G. R., Lee C. H., Qiao M., Roodman G. D., Raftery M., Gaskell S. J., Bonewald L. F. 5-Lipoxygenase metabolites of arachidonic acid stimulate isolated osteoclasts to resorb calcified matrices. J Biol Chem. 1993 May 15;268(14):10087–10094. [PubMed] [Google Scholar]
  16. Ghoshal N. G., Niyo Y. Histomorphologic features of the nasal cavity of pigs exposed to Pasteurella multocida type-D dermonecrotic toxin. Am J Vet Res. 1993 May;54(5):738–742. [PubMed] [Google Scholar]
  17. Girasole G., Jilka R. L., Passeri G., Boswell S., Boder G., Williams D. C., Manolagas S. C. 17 beta-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens. J Clin Invest. 1992 Mar;89(3):883–891. doi: 10.1172/JCI115668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gopalsami C., Yotis W., Corrigan K., Schade S., Keene J., Simonson L. Effect of outer membrane of Treponema denticola on bone resorption. Oral Microbiol Immunol. 1993 Apr;8(2):121–124. doi: 10.1111/j.1399-302x.1993.tb00557.x. [DOI] [PubMed] [Google Scholar]
  19. Grigoriadis A. E., Wang Z. Q., Cecchini M. G., Hofstetter W., Felix R., Fleisch H. A., Wagner E. F. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science. 1994 Oct 21;266(5184):443–448. doi: 10.1126/science.7939685. [DOI] [PubMed] [Google Scholar]
  20. Hall T. J., Chambers T. J. Molecular aspects of osteoclast function. Inflamm Res. 1996 Jan;45(1):1–9. doi: 10.1007/BF02263497. [DOI] [PubMed] [Google Scholar]
  21. Hanazawa S., Amano S., Nakada K., Ohmori Y., Miyoshi T., Hirose K., Kitano S. Biological characterization of interleukin-1-like cytokine produced by cultured bone cells from newborn mouse calvaria. Calcif Tissue Int. 1987 Jul;41(1):31–37. doi: 10.1007/BF02555128. [DOI] [PubMed] [Google Scholar]
  22. Hanazawa S., Hirose K., Ohmori Y., Amano S., Kitano S. Bacteroides gingivalis fimbriae stimulate production of thymocyte-activating factor by human gingival fibroblasts. Infect Immun. 1988 Jan;56(1):272–274. doi: 10.1128/iai.56.1.272-274.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hanazawa S., Kawata Y., Murakami Y., Naganuma K., Amano S., Miyata Y., Kitano S. Porphyromonas gingivalis fimbria-stimulated bone resorption in vitro is inhibited by a tyrosine kinase inhibitor. Infect Immun. 1995 Jun;63(6):2374–2377. doi: 10.1128/iai.63.6.2374-2377.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hanazawa S., Murakami Y., Hirose K., Amano S., Ohmori Y., Higuchi H., Kitano S. Bacteroides (Porphyromonas) gingivalis fimbriae activate mouse peritoneal macrophages and induce gene expression and production of interleukin-1. Infect Immun. 1991 Jun;59(6):1972–1977. doi: 10.1128/iai.59.6.1972-1977.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hanazawa S., Murakami Y., Takeshita A., Kitami H., Ohta K., Amano S., Kitano S. Porphyromonas gingivalis fimbriae induce expression of the neutrophil chemotactic factor KC gene of mouse peritoneal macrophages: role of protein kinase C. Infect Immun. 1992 Apr;60(4):1544–1549. doi: 10.1128/iai.60.4.1544-1549.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hausmann E., Lüderitz O., Knox K., Weinfeld N. Structural requirements for bone resorption by endotoxin and lipoteichoic acid. J Dent Res. 1975 Jun;54(SPEC):B94–B99. doi: 10.1177/00220345750540023401. [DOI] [PubMed] [Google Scholar]
  27. Hausmann E., Raisz L. G., Miller W. A. Endotoxin: stimulation of bone resorption in tissue culture. Science. 1970 May 15;168(3933):862–864. doi: 10.1126/science.168.3933.862. [DOI] [PubMed] [Google Scholar]
  28. Hausmann E., Weinfeld N., Miller W. A. Effects of lipopolysaccharides on bone resorption in tissue culture. Calcif Tissue Res. 1972;9(4):272–282. doi: 10.1007/BF02061967. [DOI] [PubMed] [Google Scholar]
  29. Helgeland K., Nordby O. Cell cycle-specific growth inhibitory effect on human gingival fibroblasts of a toxin isolated from the culture medium of Actinobacillus actinomycetemcomitans. J Periodontal Res. 1993 May;28(3):161–165. doi: 10.1111/j.1600-0765.1993.tb01064.x. [DOI] [PubMed] [Google Scholar]
  30. Henderson B., Nair S. P., Coates A. R. Molecular chaperones and disease. Inflamm Res. 1996 Apr;45(4):155–158. doi: 10.1007/BF02285154. [DOI] [PubMed] [Google Scholar]
  31. Henderson B., Wilson M. Cytokine induction by bacteria: beyond lipopolysaccharide. Cytokine. 1996 Apr;8(4):269–282. doi: 10.1006/cyto.1996.0036. [DOI] [PubMed] [Google Scholar]
  32. Henderson B., Wilson M. Modulins: a new class of cytokine-inducing, pro-inflammatory bacterial virulence factor. Inflamm Res. 1995 May;44(5):187–197. doi: 10.1007/BF01782257. [DOI] [PubMed] [Google Scholar]
  33. Higgins T. E., Murphy A. C., Staddon J. M., Lax A. J., Rozengurt E. Pasteurella multocida toxin is a potent inducer of anchorage-independent cell growth. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4240–4244. doi: 10.1073/pnas.89.10.4240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Holt S. C., Bramanti T. E. Factors in virulence expression and their role in periodontal disease pathogenesis. Crit Rev Oral Biol Med. 1991;2(2):177–281. doi: 10.1177/10454411910020020301. [DOI] [PubMed] [Google Scholar]
  35. Horiguchi Y., Nakai T., Kume K. Effects of Bordetella bronchiseptica dermonecrotic toxin on the structure and function of osteoblastic clone MC3T3-e1 cells. Infect Immun. 1991 Mar;59(3):1112–1116. doi: 10.1128/iai.59.3.1112-1116.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Horiguchi Y., Sugimoto N., Matsuda M. Stimulation of DNA synthesis in osteoblast-like MC3T3-E1 cells by Bordetella bronchiseptica dermonecrotic toxin. Infect Immun. 1993 Sep;61(9):3611–3615. doi: 10.1128/iai.61.9.3611-3615.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Horowitz M. C., Coleman D. L., Flood P. M., Kupper T. S., Jilka R. L. Parathyroid hormone and lipopolysaccharide induce murine osteoblast-like cells to secrete a cytokine indistinguishable from granulocyte-macrophage colony-stimulating factor. J Clin Invest. 1989 Jan;83(1):149–157. doi: 10.1172/JCI113852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Iino Y., Hopps R. M. The bone-resorbing activities in tissue culture of lipopolysaccharides from the bacteria Actinobacillus actinomycetemcomitans, Bacteroides gingivalis and Capnocytophaga ochracea isolated from human mouths. Arch Oral Biol. 1984;29(1):59–63. doi: 10.1016/0003-9969(84)90043-8. [DOI] [PubMed] [Google Scholar]
  39. Ishihara Y., Nishihara T., Maki E., Noguchi T., Koga T. Role of interleukin-1 and prostaglandin in in vitro bone resorption induced by Actinobacillus actinomycetemcomitans lipopolysaccharide. J Periodontal Res. 1991 May;26(3 Pt 1):155–160. doi: 10.1111/j.1600-0765.1991.tb01639.x. [DOI] [PubMed] [Google Scholar]
  40. Ishimi Y., Miyaura C., Jin C. H., Akatsu T., Abe E., Nakamura Y., Yamaguchi A., Yoshiki S., Matsuda T., Hirano T. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol. 1990 Nov 15;145(10):3297–3303. [PubMed] [Google Scholar]
  41. Jilka R. L., Hangoc G., Girasole G., Passeri G., Williams D. C., Abrams J. S., Boyce B., Broxmeyer H., Manolagas S. C. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science. 1992 Jul 3;257(5066):88–91. doi: 10.1126/science.1621100. [DOI] [PubMed] [Google Scholar]
  42. Kamen P. R. The effects of bacterial sonicates on human keratinizing stratified squamous epithelium in vitro. J Periodontal Res. 1981 May;16(3):323–330. doi: 10.1111/j.1600-0765.1981.tb00981.x. [DOI] [PubMed] [Google Scholar]
  43. Kataoka M., Kawamura K., Kondoh T., Wakano Y., Ishida H. Purification of a fibroblast-inhibitory factor from Actinobacillus actinomycetemcomitans Y4. FEMS Microbiol Lett. 1993 Feb 15;107(1):111–114. doi: 10.1111/j.1574-6968.1993.tb06013.x. [DOI] [PubMed] [Google Scholar]
  44. Kato S., Muro M., Akifusa S., Hanada N., Semba I., Fujii T., Kowashi Y., Nishihara T. Evidence for apoptosis of murine macrophages by Actinobacillus actinomycetemcomitans infection. Infect Immun. 1995 Oct;63(10):3914–3919. doi: 10.1128/iai.63.10.3914-3919.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Kawata Y., Hanazawa S., Amano S., Murakami Y., Matsumoto T., Nishida K., Kitano S. Porphyromonas gingivalis fimbriae stimulate bone resorption in vitro. Infect Immun. 1994 Jul;62(7):3012–3016. doi: 10.1128/iai.62.7.3012-3016.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Keeting P. E., Rifas L., Harris S. A., Colvard D. S., Spelsberg T. C., Peck W. A., Riggs B. L. Evidence for interleukin-1 beta production by cultured normal human osteoblast-like cells. J Bone Miner Res. 1991 Aug;6(8):827–833. doi: 10.1002/jbmr.5650060807. [DOI] [PubMed] [Google Scholar]
  47. Kimman T. G., Löwik C. W., van de Wee-Pals L. J., Thesingh C. W., Defize P., Kamp E. M., Bijvoet O. L. Stimulation of bone resorption by inflamed nasal mucosa, dermonecrotic toxin-containing conditioned medium from Pasteurella multocida, and purified dermonecrotic toxin from P. multocida. Infect Immun. 1987 Sep;55(9):2110–2116. doi: 10.1128/iai.55.9.2110-2116.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Kirby A. C., Meghji S., Nair S. P., White P., Reddi K., Nishihara T., Nakashima K., Willis A. C., Sim R., Wilson M. The potent bone-resorbing mediator of Actinobacillus actinomycetemcomitans is homologous to the molecular chaperone GroEL. J Clin Invest. 1995 Sep;96(3):1185–1194. doi: 10.1172/JCI118150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Larjava H., Uitto V. J., Eerola E., Haapasalo M. Inhibition of gingival fibroblast growth by Bacteroides gingivalis. Infect Immun. 1987 Jan;55(1):201–205. doi: 10.1128/iai.55.1.201-205.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Lensgraf E. J., Greenblatt J. J., Bawden J. W. Effect of group A streptococcal peptidoglycan and group A streptococcal cell wall on bone in tissue culture. Arch Oral Biol. 1979;24(7):495–498. doi: 10.1016/0003-9969(79)90126-2. [DOI] [PubMed] [Google Scholar]
  51. Littlewood A. J., Russell J., Harvey G. R., Hughes D. E., Russell R. G., Gowen M. The modulation of the expression of IL-6 and its receptor in human osteoblasts in vitro. Endocrinology. 1991 Sep;129(3):1513–1520. doi: 10.1210/endo-129-3-1513. [DOI] [PubMed] [Google Scholar]
  52. Loomer P. M., Ellen R. P., Tenenbaum H. C. Characterization of inhibitory effects of suspected periodontopathogens on osteogenesis in vitro. Infect Immun. 1995 Sep;63(9):3287–3296. doi: 10.1128/iai.63.9.3287-3296.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Loomer P. M., Sigusch B., Sukhu B., Ellen R. P., Tenenbaum H. C. Direct effects of metabolic products and sonicated extracts of Porphyromonas gingivalis 2561 on osteogenesis in vitro. Infect Immun. 1994 Apr;62(4):1289–1297. doi: 10.1128/iai.62.4.1289-1297.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Löwik C. W., van der Pluijm G., Bloys H., Hoekman K., Bijvoet O. L., Aarden L. A., Papapoulos S. E. Parathyroid hormone (PTH) and PTH-like protein (PLP) stimulate interleukin-6 production by osteogenic cells: a possible role of interleukin-6 in osteoclastogenesis. Biochem Biophys Res Commun. 1989 Aug 15;162(3):1546–1552. doi: 10.1016/0006-291x(89)90851-6. [DOI] [PubMed] [Google Scholar]
  55. Malek R., Fisher J. G., Caleca A., Stinson M., van Oss C. J., Lee J. Y., Cho M. I., Genco R. J., Evans R. T., Dyer D. W. Inactivation of the Porphyromonas gingivalis fimA gene blocks periodontal damage in gnotobiotic rats. J Bacteriol. 1994 Feb;176(4):1052–1059. doi: 10.1128/jb.176.4.1052-1059.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Manthey C. L., Vogel S. N. Interactions of lipopolysaccharide with macrophages. Immunol Ser. 1994;60:63–81. [PubMed] [Google Scholar]
  57. Martin T. J., Ng K. W. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem. 1994 Nov;56(3):357–366. doi: 10.1002/jcb.240560312. [DOI] [PubMed] [Google Scholar]
  58. Martineau-Doizé B., Caya I., Gagné S., Jutras I., Dumas G. Effects of Pasteurella multocida toxin on the osteoclast population of the rat. J Comp Pathol. 1993 Jan;108(1):81–91. doi: 10.1016/s0021-9975(08)80230-7. [DOI] [PubMed] [Google Scholar]
  59. Martineau-Doizé B., Ménard J., Girard C., Frantz J. C., Martineau G. P. Effects of purified Pasteurella multocida dermonecrotoxin on the nasal ventral turbinates of fattening pigs: histological observations. Can J Vet Res. 1991 Oct;55(4):377–379. [PMC free article] [PubMed] [Google Scholar]
  60. McMillan R. M., Walker E. R. Designing therapeutically effective 5-lipoxygenase inhibitors. Trends Pharmacol Sci. 1992 Aug;13(8):323–330. doi: 10.1016/0165-6147(92)90100-k. [DOI] [PubMed] [Google Scholar]
  61. Meghji S., Henderson B., Nair S., Wilson M. Inhibition of bone DNA and collagen production by surface-associated material from bacteria implicated in the pathology of periodontal disease. J Periodontol. 1992 Sep;63(9):736–742. doi: 10.1902/jop.1992.63.9.736. [DOI] [PubMed] [Google Scholar]
  62. Meghji S., Sandy J. R., Scutt A. M., Harvey W., Harris M. Stimulation of bone resorption by lipoxygenase metabolites of arachidonic acid. Prostaglandins. 1988 Aug;36(2):139–149. doi: 10.1016/0090-6980(88)90301-2. [DOI] [PubMed] [Google Scholar]
  63. Meghji S., Wilson M., Barber P., Henderson B. Bone resorbing activity of surface-associated material from Actinobacillus actinomycetemcomitans and Eikenella corrodens. J Med Microbiol. 1994 Sep;41(3):197–203. doi: 10.1099/00222615-41-3-197. [DOI] [PubMed] [Google Scholar]
  64. Meghji S., Wilson M., Henderson B., Kinane D. Anti-proliferative and cytotoxic activity of surface-associated material from periodontopathogenic bacteria. Arch Oral Biol. 1992 Aug;37(8):637–644. doi: 10.1016/0003-9969(92)90126-s. [DOI] [PubMed] [Google Scholar]
  65. Meikle M. C., Gowen M., Reynolds J. J. Effect of streptococcal cell wall components on bone metabolism in vitro. Calcif Tissue Int. 1982 Jul;34(4):350–364. [PubMed] [Google Scholar]
  66. Mihara J., Miyazawa Y., Holt S. C. Modulation of growth and function of human gingival fibroblasts by fibroblast-activating factor derived from Porphyromonas gingivalis W50. Infect Immun. 1993 Feb;61(2):596–601. doi: 10.1128/iai.61.2.596-601.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Mihara J., Yoneda T., Holt S. C. Role of Porphyromonas gingivalis-derived fibroblast-activating factor in bone resorption. Infect Immun. 1993 Aug;61(8):3562–3564. doi: 10.1128/iai.61.8.3562-3564.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Millar S. J., Goldstein E. G., Levine M. J., Hausmann E. Modulation of bone metabolism by two chemically distinct lipopolysaccharide fractions from Bacteroides gingivalis. Infect Immun. 1986 Jan;51(1):302–306. doi: 10.1128/iai.51.1.302-306.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
  70. Mota G. F., Carneiro C. R., Gomes L., Lopes J. D. Monoclonal antibodies to Staphylococcus aureus laminin-binding proteins cross-react with mammalian cells. Infect Immun. 1988 Jun;56(6):1580–1584. doi: 10.1128/iai.56.6.1580-1584.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Mullan P. B., Lax A. J. Pasteurella multocida toxin is a mitogen for bone cells in primary culture. Infect Immun. 1996 Mar;64(3):959–965. doi: 10.1128/iai.64.3.959-965.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Nair S., Song Y., Meghji S., Reddi K., Harris M., Ross A., Poole S., Wilson M., Henderson B. Surface-associated proteins from Staphylococcus aureus demonstrate potent bone resorbing activity. J Bone Miner Res. 1995 May;10(5):726–734. doi: 10.1002/jbmr.5650100509. [DOI] [PubMed] [Google Scholar]
  73. Nishihara T., Ohsaki Y., Ueda N., Saito N., Mundy G. R. Mouse interleukin-1 receptor antagonist induced by Actinobacillus actinomycetemcomitans lipopolysaccharide blocks the effects of interleukin-1 on bone resorption and osteoclast-like cell formation. Infect Immun. 1994 Feb;62(2):390–397. doi: 10.1128/iai.62.2.390-397.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Nishihara T., Ueda N., Amano K., Ishihara Y., Hayakawa H., Kuroyanagi T., Ohsaki Y., Nagata K., Noguchi T. Actinobacillus actinomycetemcomitans Y4 capsular-polysaccharide-like polysaccharide promotes osteoclast-like cell formation by interleukin-1 alpha production in mouse marrow cultures. Infect Immun. 1995 May;63(5):1893–1898. doi: 10.1128/iai.63.5.1893-1898.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Patti J. M., Bremell T., Krajewska-Pietrasik D., Abdelnour A., Tarkowski A., Rydén C., Hök M. The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. Infect Immun. 1994 Jan;62(1):152–161. doi: 10.1128/iai.62.1.152-161.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Raisz L. G., Alander C., Eilon G., Whitehead S. P., Nuki K. Effects of two bacterial products, muramyl dipeptide and endotoxin, on bone resorption in organ culture. Calcif Tissue Int. 1982 Jul;34(4):365–369. doi: 10.1007/BF02411269. [DOI] [PubMed] [Google Scholar]
  77. Raisz L. G., Nuki K., Alander C. B., Craig R. G. Interactions between bacterial endotoxin and other stimulators of bone resorption in organ culture. J Periodontal Res. 1981 Jan;16(1):1–7. doi: 10.1111/j.1600-0765.1981.tb00943.x. [DOI] [PubMed] [Google Scholar]
  78. Raja R. H., Raucci G., Hook M. Peptide analogs to a fibronectin receptor inhibit attachment of Staphylococcus aureus to fibronectin-containing substrates. Infect Immun. 1990 Aug;58(8):2593–2598. doi: 10.1128/iai.58.8.2593-2598.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Ralston S. H., Ho L. P., Helfrich M. H., Grabowski P. S., Johnston P. W., Benjamin N. Nitric oxide: a cytokine-induced regulator of bone resorption. J Bone Miner Res. 1995 Jul;10(7):1040–1049. doi: 10.1002/jbmr.5650100708. [DOI] [PubMed] [Google Scholar]
  80. Reddi K., Meghji S., Wilson M., Henderson B. Comparison of the osteolytic activity of surface-associated proteins of bacteria implicated in periodontal disease. Oral Dis. 1995 Mar;1(1):26–31. doi: 10.1111/j.1601-0825.1995.tb00153.x. [DOI] [PubMed] [Google Scholar]
  81. Reddi K., Poole S., Nair S., Meghji S., Henderson B., Wilson M. Lipid A-associated proteins from periodontopathogenic bacteria induce interleukin-6 production by human gingival fibroblasts and monocytes. FEMS Immunol Med Microbiol. 1995 Apr;11(2):137–144. doi: 10.1111/j.1574-695X.1995.tb00100.x. [DOI] [PubMed] [Google Scholar]
  82. Retzlaff C., Yamamoto Y., Hoffman P. S., Friedman H., Klein T. W. Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. Infect Immun. 1994 Dec;62(12):5689–5693. doi: 10.1128/iai.62.12.5689-5693.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Riancho J. A., Salas E., Zarrabeitia M. T., Olmos J. M., Amado J. A., Fernández-Luna J. L., González-Macías J. Expression and functional role of nitric oxide synthase in osteoblast-like cells. J Bone Miner Res. 1995 Mar;10(3):439–446. doi: 10.1002/jbmr.5650100315. [DOI] [PubMed] [Google Scholar]
  84. Ross A. C. Infected arthroplasties. Curr Opin Rheumatol. 1991 Aug;3(4):628–633. doi: 10.1097/00002281-199108000-00013. [DOI] [PubMed] [Google Scholar]
  85. Rutter J. M. Atrophic rhinitis in swine. Adv Vet Sci Comp Med. 1985;29:239–279. [PubMed] [Google Scholar]
  86. Rydén C., Yacoub A. I., Maxe I., Heinegård D., Oldberg A., Franzén A., Ljungh A., Rubin K. Specific binding of bone sialoprotein to Staphylococcus aureus isolated from patients with osteomyelitis. Eur J Biochem. 1989 Sep 15;184(2):331–336. doi: 10.1111/j.1432-1033.1989.tb15023.x. [DOI] [PubMed] [Google Scholar]
  87. Saito S., Hayakawa M., Takiguchi H., Abiko Y. Suppression of proliferation of a human B-cell leukaemic cell line derived from acute lymphoblastic leukaemia by soluble factor(s) from Campylobacter rectus. Arch Oral Biol. 1993 Jun;38(6):449–455. doi: 10.1016/0003-9969(93)90180-t. [DOI] [PubMed] [Google Scholar]
  88. Schumann R. R., Rietschel E. T., Loppnow H. The role of CD14 and lipopolysaccharide-binding protein (LBP) in the activation of different cell types by endotoxin. Med Microbiol Immunol. 1994 Dec;183(6):279–297. doi: 10.1007/BF00196679. [DOI] [PubMed] [Google Scholar]
  89. Seckinger P., Klein-Nulend J., Alander C., Thompson R. C., Dayer J. M., Raisz L. G. Natural and recombinant human IL-1 receptor antagonists block the effects of IL-1 on bone resorption and prostaglandin production. J Immunol. 1990 Dec 15;145(12):4181–4184. [PubMed] [Google Scholar]
  90. Shenker B. J., Datar S. Fusobacterium nucleatum inhibits human T-cell activation by arresting cells in the mid-G1 phase of the cell cycle. Infect Immun. 1995 Dec;63(12):4830–4836. doi: 10.1128/iai.63.12.4830-4836.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Silveira D., Edington N., Smith I. M. Ultrastructural changes in the nasal turbinate bones of pigs in early infection with Bordetella bronchiseptica. Res Vet Sci. 1982 Jul;33(1):37–42. [PubMed] [Google Scholar]
  92. Sismey-Durrant H. J., Atkinson S. J., Hopps R. M., Heath J. K. The effect of lipopolysaccharide from bacteroides gingivalis and muramyl dipeptide on osteoblast collagenase release. Calcif Tissue Int. 1989 May;44(5):361–363. doi: 10.1007/BF02556318. [DOI] [PubMed] [Google Scholar]
  93. Sismey-Durrant H. J., Hopps R. M. The effect of lipopolysaccharide from the oral bacterium Bacteroides gingivalis on osteoclastic resorption of sperm-whale dentine slices in vitro. Arch Oral Biol. 1987;32(12):911–913. doi: 10.1016/0003-9969(87)90106-3. [DOI] [PubMed] [Google Scholar]
  94. Smyth M. G., Pickersgill R. W., Lax A. J. The potent mitogen Pasteurella multocida toxin is highly resistant to proteolysis but becomes susceptible at lysosomal pH. FEBS Lett. 1995 Feb 20;360(1):62–66. doi: 10.1016/0014-5793(95)00077-m. [DOI] [PubMed] [Google Scholar]
  95. Staddon J. M., Barker C. J., Murphy A. C., Chanter N., Lax A. J., Michell R. H., Rozengurt E. Pasteurella multocida toxin, a potent mitogen, increases inositol 1,4,5-trisphosphate and mobilizes Ca2+ in Swiss 3T3 cells. J Biol Chem. 1991 Mar 15;266(8):4840–4847. [PubMed] [Google Scholar]
  96. Stashenko P., Dewhirst F. E., Peros W. J., Kent R. L., Ago J. M. Synergistic interactions between interleukin 1, tumor necrosis factor, and lymphotoxin in bone resorption. J Immunol. 1987 Mar 1;138(5):1464–1468. [PubMed] [Google Scholar]
  97. Sterner-Kock A., Lanske B., Uberschär S., Atkinson M. J. Effects of the Pasteurella multocida toxin on osteoblastic cells in vitro. Vet Pathol. 1995 May;32(3):274–279. doi: 10.1177/030098589503200309. [DOI] [PubMed] [Google Scholar]
  98. Sveen K., Skaug N. Bone resorption stimulated by lipopolysaccharides from Bacteroides, Fusobacterium and Veillonella, and by the lipid A and the polysaccharide part of Fusobacterium lipopolysaccharide. Scand J Dent Res. 1980 Dec;88(6):535–542. doi: 10.1111/j.1600-0722.1980.tb01264.x. [DOI] [PubMed] [Google Scholar]
  99. Ueda N., Nishihara T., Ishihara Y., Amano K., Kuroyanagi T., Noguchi T. Role of prostaglandin in the formation of osteoclasts induced by capsular-like polysaccharide antigen of Actinobacillus actinomycetemcomitans strain Y4. Oral Microbiol Immunol. 1995 Apr;10(2):69–75. doi: 10.1111/j.1399-302x.1995.tb00121.x. [DOI] [PubMed] [Google Scholar]
  100. Vaes G. Cellular biology and biochemical mechanism of bone resorption. A review of recent developments on the formation, activation, and mode of action of osteoclasts. Clin Orthop Relat Res. 1988 Jun;(231):239–271. [PubMed] [Google Scholar]
  101. Ward P. N., Higgins T. E., Murphy A. C., Mullan P. B., Rozengurt E., Lax A. J. Mutation of a putative ADP-ribosylation motif in the Pasteurella multocida toxin does not affect mitogenic activity. FEBS Lett. 1994 Mar 28;342(1):81–84. doi: 10.1016/0014-5793(94)80589-x. [DOI] [PubMed] [Google Scholar]
  102. White P. A., Wilson M., Nair S. P., Kirby A. C., Reddi K., Henderson B. Characterization of an antiproliferative surface-associated protein from Actinobacillus actinomycetemcomitans which can be neutralized by sera from a proportion of patients with localized juvenile periodontitis. Infect Immun. 1995 Jul;63(7):2612–2618. doi: 10.1128/iai.63.7.2612-2618.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Wilson M. Biological activities of lipopolysaccharides from oral bacteria and their relevance to the pathogenesis of chronic periodontitis. Sci Prog. 1995;78(Pt 1):19–34. [PubMed] [Google Scholar]
  104. Wilson M., Henderson B. Virulence factors of Actinobacillus actinomycetemcomitans relevant to the pathogenesis of inflammatory periodontal diseases. FEMS Microbiol Rev. 1995 Dec;17(4):365–379. doi: 10.1111/j.1574-6976.1995.tb00220.x. [DOI] [PubMed] [Google Scholar]
  105. Wilson M., Kamin S., Harvey W. Bone resorbing activity of purified capsular material from Actinobacillus actinomycetemcomitans. J Periodontal Res. 1985 Sep;20(5):484–491. doi: 10.1111/j.1600-0765.1985.tb00831.x. [DOI] [PubMed] [Google Scholar]
  106. Wilson M., Meghji S., Barber P., Henderson B. Biological activities of surface-associated material from Porphyromonas gingivalis. FEMS Immunol Med Microbiol. 1993 Mar;6(2-3):147–155. doi: 10.1111/j.1574-695X.1993.tb00317.x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES