Abstract
The chromosome of group B streptococci (GBS) contains a gene which is related to the C5a peptidase gene (scpA) of group A streptococci (GAS). scpA encodes a surface-associated peptidase (group A streptococcal C5a peptidase [SCPA]) which specifically cleaves C5a, a major chemoattractant generated in serum by activation of complement. The entire scpA-like gene (scpB) was cloned from a GBS strain and sequenced. The gene encodes an open reading frame of 3,450 bp, which corresponds to a deduced protein (SCPB) of 1,150 amino acids with a molecular weight of 126,237 Da. Nucleotide and deduced amino acid sequences of SCPB were found to be highly homologous to those of SCPAs from GAS. Unexpectedly, scpA12 is more similar to scpB than to another GAS gene, scpA49. The sequence 5' of the open reading frame, including transcription start and a termination site in the signal sequence, is also similar to that of scpA, although less conserved than the coding sequences. The near identity of GBS and GAS peptidases is consistent with horizontal transmission of the scp gene between these species. Recombinant SCPB was expressed in Escherichia coli by using the expression vector plasmid pGEX-4T-1 and was shown to be identical in size to the enzyme extracted from the parental GBS strain 78-471.
Full Text
The Full Text of this article is available as a PDF (302.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bohnsack J. F., Chang J. K., Hill H. R. Restricted ability of group B streptococcal C5a-ase to inactivate C5a prepared from different animal species. Infect Immun. 1993 Apr;61(4):1421–1426. doi: 10.1128/iai.61.4.1421-1426.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bohnsack J. F., Mollison K. W., Buko A. M., Ashworth J. C., Hill H. R. Group B streptococci inactivate complement component C5a by enzymic cleavage at the C-terminus. Biochem J. 1991 Feb 1;273(Pt 3):635–640. doi: 10.1042/bj2730635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bohnsack J. F., Zhou X. N., Williams P. A., Cleary P. P., Parker C. J., Hill H. R. Purification of the proteinase from group B streptococci that inactivates human C5a. Biochim Biophys Acta. 1991 Aug 30;1079(2):222–228. doi: 10.1016/0167-4838(91)90129-n. [DOI] [PubMed] [Google Scholar]
- Chen C. C., Cleary P. P. Complete nucleotide sequence of the streptococcal C5a peptidase gene of Streptococcus pyogenes. J Biol Chem. 1990 Feb 25;265(6):3161–3167. [PubMed] [Google Scholar]
- Cleary P. P., Handley J., Suvorov A. N., Podbielski A., Ferrieri P. Similarity between the group B and A streptococcal C5a peptidase genes. Infect Immun. 1992 Oct;60(10):4239–4244. doi: 10.1128/iai.60.10.4239-4244.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleary P. P., Peterson J., Chen C., Nelson C. Virulent human strains of group G streptococci express a C5a peptidase enzyme similar to that produced by group A streptococci. Infect Immun. 1991 Jul;59(7):2305–2310. doi: 10.1128/iai.59.7.2305-2310.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleary P. P., Prahbu U., Dale J. B., Wexler D. E., Handley J. Streptococcal C5a peptidase is a highly specific endopeptidase. Infect Immun. 1992 Dec;60(12):5219–5223. doi: 10.1128/iai.60.12.5219-5223.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feng D. F., Doolittle R. F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol. 1987;25(4):351–360. doi: 10.1007/BF02603120. [DOI] [PubMed] [Google Scholar]
- Hill H. R., Bohnsack J. F., Morris E. Z., Augustine N. H., Parker C. J., Cleary P. P., Wu J. T. Group B streptococci inhibit the chemotactic activity of the fifth component of complement. J Immunol. 1988 Nov 15;141(10):3551–3556. [PubMed] [Google Scholar]
- Ji Y., McLandsborough L., Kondagunta A., Cleary P. P. C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect Immun. 1996 Feb;64(2):503–510. doi: 10.1128/iai.64.2.503-510.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamimiya S., Weisblum B. Translational attenuation control of ermSF, an inducible resistance determinant encoding rRNA N-methyltransferase from Streptomyces fradiae. J Bacteriol. 1988 Apr;170(4):1800–1811. doi: 10.1128/jb.170.4.1800-1811.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Martin T. R., Ruzinski J. T., Rubens C. E., Chi E. Y., Wilson C. B. The effect of type-specific polysaccharide capsule on the clearance of group B streptococci from the lungs of infant and adult rats. J Infect Dis. 1992 Feb;165(2):306–314. doi: 10.1093/infdis/165.2.306. [DOI] [PubMed] [Google Scholar]
- Michel J. L., Madoff L. C., Kling D. E., Kasper D. L., Ausubel F. M. Cloned alpha and beta C-protein antigens of group B streptococci elicit protective immunity. Infect Immun. 1991 Jun;59(6):2023–2028. doi: 10.1128/iai.59.6.2023-2028.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Connor S. P., Cleary P. P. In vivo Streptococcus pyogenes C5a peptidase activity: analysis using transposon- and nitrosoguanidine-induced mutants. J Infect Dis. 1987 Sep;156(3):495–504. doi: 10.1093/infdis/156.3.495. [DOI] [PubMed] [Google Scholar]
- Podbielski A., Flosdorff A., Weber-Heynemann J. The group A streptococcal virR49 gene controls expression of four structural vir regulon genes. Infect Immun. 1995 Jan;63(1):9–20. doi: 10.1128/iai.63.1.9-20.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podbielski A., Peterson J. A., Cleary P. Surface protein-CAT reporter fusions demonstrate differential gene expression in the vir regulon of Streptococcus pyogenes. Mol Microbiol. 1992 Aug;6(16):2253–2265. doi: 10.1111/j.1365-2958.1992.tb01401.x. [DOI] [PubMed] [Google Scholar]
- Pritchard K. H., Cleary P. P. Differential expression of genes in the vir regulon of Streptococcus pyogenes is controlled by transcription termination. Mol Gen Genet. 1996 Feb 5;250(2):207–213. doi: 10.1007/BF02174180. [DOI] [PubMed] [Google Scholar]
- Rogers S., Wells R., Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986 Oct 17;234(4774):364–368. doi: 10.1126/science.2876518. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneewind O., Fowler A., Faull K. F. Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science. 1995 Apr 7;268(5207):103–106. doi: 10.1126/science.7701329. [DOI] [PubMed] [Google Scholar]
- Siezen R. J., de Vos W. M., Leunissen J. A., Dijkstra B. W. Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Eng. 1991 Oct;4(7):719–737. doi: 10.1093/protein/4.7.719. [DOI] [PubMed] [Google Scholar]