Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Jul;64(7):2408–2414. doi: 10.1128/iai.64.7.2408-2414.1996

Respiratory activity is essential for post-exponential-phase production of type 5 capsular polysaccharide by Staphylococcus aureus.

B Dassy 1, J M Fournier 1
PMCID: PMC174090  PMID: 8698459

Abstract

Capsule formation is believed to have a significant role in bacterial virulence. To examine the possible involvement of capsular polysaccharide (CP) from Staphylococcus aureus in the pathological mechanisms associated with staphylococcal infections, we investigated the influence of respiratory activity on type 5 CP production by S. aureus grown in the presence of various concentrations of dissolved oxygen or nitrate. The effects of several metabolic inhibitors (arsenite, cyanide, azide, trimethylamine N-oxide, 2-heptyl-4-hydroxyquinoline N-oxide, and 2,4-dinitrophenol) were also tested. The metabolism of the bacteria was estimated by measuring their reductive capacity and by monitoring the pH and concentrations of fermentation products. Type 5 CP was always produced by S. aureus during the exponential phase of growth under all culture conditions tested. In contrast, post-exponential-phase CP production appeared to be strictly dependent on the respiratory activity. Since post-exponential-phase CP production contributes at least two-thirds of the total CP obtained, the influence of S. aureus respiration on CP production might be of some importance in the process of infection.

Full Text

The Full Text of this article is available as a PDF (283.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albus A., Fournier J. M., Wolz C., Boutonnier A., Ranke M., Høiby N., Hochkeppel H., Döring G. Staphylococcus aureus capsular types and antibody response to lung infection in patients with cystic fibrosis. J Clin Microbiol. 1988 Dec;26(12):2505–2509. doi: 10.1128/jcm.26.12.2505-2509.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARNES E. H., MORRIS J. F. A quantitative study of the phosphatase activity of Micrococcus pyogenes. J Bacteriol. 1957 Jan;73(1):100–104. doi: 10.1128/jb.73.1.100-104.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barker L. P., Simpson W. A., Christensen G. D. Differential production of slime under aerobic and anaerobic conditions. J Clin Microbiol. 1990 Nov;28(11):2578–2579. doi: 10.1128/jcm.28.11.2578-2579.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bayston R., Rodgers J. Production of extra-cellular slime by Staphylococcus epidermidis during stationary phase of growth: its association with adherence to implantable devices. J Clin Pathol. 1990 Oct;43(10):866–870. doi: 10.1136/jcp.43.10.866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bochner B. R., Savageau M. A. Generalized indicator plate for genetic, metabolic, and taxonomic studies with microorganisms. Appl Environ Microbiol. 1977 Feb;33(2):434–444. doi: 10.1128/aem.33.2.434-444.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boutonnier A., Nato F., Bouvet A., Lebrun L., Audurier A., Mazie J. C., Fournier J. M. Direct testing of blood culture for detection of the serotype 5 and 8 capsular polysaccharides of Staphylococcus aureus. J Clin Microbiol. 1989 May;27(5):989–993. doi: 10.1128/jcm.27.5.989-993.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burke K. A., Lascelles J. Nitrate reductase system in Staphylococcus aureus wild type and mutants. J Bacteriol. 1975 Jul;123(1):308–316. doi: 10.1128/jb.123.1.308-316.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Campbell I. M., Crozier D. N., Pawagi A. B. Effect of hypobaric oxygen and oleic acid on respiration of Staphylococcus aureus. Eur J Clin Microbiol. 1986 Dec;5(6):622–628. doi: 10.1007/BF02013285. [DOI] [PubMed] [Google Scholar]
  9. Christensson B., Boutonnier A., Ryding U., Fournier J. M. Diagnosing Staphylococcus aureus endocarditis by detecting antibodies against S. aureus capsular polysaccharide types 5 and 8. J Infect Dis. 1991 Mar;163(3):530–533. doi: 10.1093/infdis/163.3.530. [DOI] [PubMed] [Google Scholar]
  10. Coleman G., Garbutt I. T., Demnitz U. Ability of a Staphylococcus aureus isolate from a chronic osteomyelitic lesion to survive in the absence of air. Eur J Clin Microbiol. 1983 Dec;2(6):595–597. doi: 10.1007/BF02016574. [DOI] [PubMed] [Google Scholar]
  11. Cross A. S. The biologic significance of bacterial encapsulation. Curr Top Microbiol Immunol. 1990;150:87–95. doi: 10.1007/978-3-642-74694-9_5. [DOI] [PubMed] [Google Scholar]
  12. Cunha F. Q., Moss D. W., Leal L. M., Moncada S., Liew F. Y. Induction of macrophage parasiticidal activity by Staphylococcus aureus and exotoxins through the nitric oxide synthesis pathway. Immunology. 1993 Apr;78(4):563–567. [PMC free article] [PubMed] [Google Scholar]
  13. Dassy B., Hogan T., Foster T. J., Fournier J. M. Involvement of the accessory gene regulator (agr) in expression of type 5 capsular polysaccharide by Staphylococcus aureus. J Gen Microbiol. 1993 Jun;139(Pt 6):1301–1306. doi: 10.1099/00221287-139-6-1301. [DOI] [PubMed] [Google Scholar]
  14. Dassy B., Stringfellow W. T., Lieb M., Fournier J. M. Production of type 5 capsular polysaccharide by Staphylococcus aureus grown in a semi-synthetic medium. J Gen Microbiol. 1991 May;137(5):1155–1162. doi: 10.1099/00221287-137-5-1155. [DOI] [PubMed] [Google Scholar]
  15. Deighton M., Borland R. Regulation of slime production in Staphylococcus epidermidis by iron limitation. Infect Immun. 1993 Oct;61(10):4473–4479. doi: 10.1128/iai.61.10.4473-4479.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. GARDNER J. F., LASCELLES J. The requirement for acetate of a streptomycin-resistant strain of Staphylococcus aureus. J Gen Microbiol. 1962 Sep;29:157–164. doi: 10.1099/00221287-29-1-157. [DOI] [PubMed] [Google Scholar]
  17. GELLENBECK S. M. Aerobic respiratory metabolism of Staphylococcus aureus from an infected animal. J Bacteriol. 1962 Mar;83:450–455. doi: 10.1128/jb.83.3.450-455.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Havaei S. A., Hancock I. C. The capsular turnover product of Staphylococcus aureus strain Smith. FEMS Microbiol Lett. 1994 May 1;118(1-2):37–43. doi: 10.1111/j.1574-6968.1994.tb06800.x. [DOI] [PubMed] [Google Scholar]
  19. Hochkeppel H. K., Braun D. G., Vischer W., Imm A., Sutter S., Staeubli U., Guggenheim R., Kaplan E. L., Boutonnier A., Fournier J. M. Serotyping and electron microscopy studies of Staphylococcus aureus clinical isolates with monoclonal antibodies to capsular polysaccharide types 5 and 8. J Clin Microbiol. 1987 Mar;25(3):526–530. doi: 10.1128/jcm.25.3.526-530.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jacob T. D., Nakayama D. K., Seki I., Exler R., Lancaster J. R., Jr, Sweetland M. A., Yousem S., Simmons R. L., Billiar T. R., Peitzman A. B. Hemodynamic effects and metabolic fate of inhaled nitric oxide in hypoxic piglets. J Appl Physiol (1985) 1994 Apr;76(4):1794–1801. doi: 10.1152/jappl.1994.76.4.1794. [DOI] [PubMed] [Google Scholar]
  21. Jarvis A. W., Lawrence R. C., Pritchard G. G. Production of staphylococcal enterotoxins A, B, and C under conditions of controlled pH and aeration. Infect Immun. 1973 Jun;7(6):847–854. doi: 10.1128/iai.7.6.847-854.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Karakawa W. W., Fournier J. M., Vann W. F., Arbeit R., Schneerson R. S., Robbins J. B. Method for the serological typing of the capsular polysaccharides of Staphylococcus aureus. J Clin Microbiol. 1985 Sep;22(3):445–447. doi: 10.1128/jcm.22.3.445-447.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kashket E. R. Proton motive force in growing Streptococcus lactis and Staphylococcus aureus cells under aerobic and anaerobic conditions. J Bacteriol. 1981 Apr;146(1):369–376. doi: 10.1128/jb.146.1.369-376.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kubak B. M., Yotis W. W. Staphylococcus aureus adenosine triphosphatase: inhibitor sensitivity and release from membrane. J Bacteriol. 1981 Apr;146(1):385–390. doi: 10.1128/jb.146.1.385-390.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. LeClaire R. D., Kell W. M., Sadik R. A., Downs M. B., Parker G. W. Regulation of staphylococcal enterotoxin B-elicited nitric oxide production by endothelial cells. Infect Immun. 1995 Feb;63(2):539–546. doi: 10.1128/iai.63.2.539-546.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lee J. C., Takeda S., Livolsi P. J., Paoletti L. C. Effects of in vitro and in vivo growth conditions on expression of type 8 capsular polysaccharide by Staphylococcus aureus. Infect Immun. 1993 May;61(5):1853–1858. doi: 10.1128/iai.61.5.1853-1858.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lin E. C., Iuchi S. Regulation of gene expression in fermentative and respiratory systems in Escherichia coli and related bacteria. Annu Rev Genet. 1991;25:361–387. doi: 10.1146/annurev.ge.25.120191.002045. [DOI] [PubMed] [Google Scholar]
  28. Mohr C. D., Sonsteby S. K., Deretic V. The Pseudomonas aeruginosa homologs of hemC and hemD are linked to the gene encoding the regulator of mucoidy AlgR. Mol Gen Genet. 1994 Jan;242(2):177–184. doi: 10.1007/BF00391011. [DOI] [PubMed] [Google Scholar]
  29. Morse S. A., Mah R. A. Regulation of staphylococcal enterotoxin B: effect of anaerobic shock. Appl Microbiol. 1973 Apr;25(4):553–557. doi: 10.1128/am.25.4.553-557.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Novick R. P., Projan S. J., Kornblum J., Ross H. F., Ji G., Kreiswirth B., Vandenesch F., Moghazeh S. The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol Gen Genet. 1995 Aug 30;248(4):446–458. doi: 10.1007/BF02191645. [DOI] [PubMed] [Google Scholar]
  31. Nychas G. J., Tranter H. S., Brehm R. D., Board R. G. Staphylococcus aureus S-6: factors affecting its growth, enterotoxin B production and exoprotein formation. J Appl Bacteriol. 1991 Apr;70(4):344–350. doi: 10.1111/j.1365-2672.1991.tb02947.x. [DOI] [PubMed] [Google Scholar]
  32. Park M. K., Myers R. A., Marzella L. Oxygen tensions and infections: modulation of microbial growth, activity of antimicrobial agents, and immunologic responses. Clin Infect Dis. 1992 Mar;14(3):720–740. doi: 10.1093/clinids/14.3.720. [DOI] [PubMed] [Google Scholar]
  33. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  34. Poutrel B., Gilbert F. B., Lebrun M. Effects of culture conditions on production of type 5 capsular polysaccharide by human and bovine Staphylococcus aureus strains. Clin Diagn Lab Immunol. 1995 Mar;2(2):166–171. doi: 10.1128/cdli.2.2.166-171.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Powelson D. M., Wilson P. W., Burris R. H. Oxidation of glucose, glycerol and acetate by Staphylococcus aureus. Biochem J. 1947;41(4):486–491. doi: 10.1042/bj0410486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pérez-Giraldo C., Rodríguez-Benito A., Morán F. J., Hurtado C., Blanco M. T., Gómez-García A. C. Influence of the incubation atmosphere on the production of slime by Staphylococcus epidermidis. Eur J Clin Microbiol Infect Dis. 1995 Apr;14(4):359–362. doi: 10.1007/BF02116534. [DOI] [PubMed] [Google Scholar]
  37. SMITH L. Bacterial cytochromes. Bacteriol Rev. 1954 Jun;18(2):106–130. doi: 10.1128/br.18.2.106-130.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. STRASTERS K. C., WINKLER K. C. CARBOHYDRATE METABOLISM OF STAPHYLOCOCCUS AUREUS. J Gen Microbiol. 1963 Nov;33:213–229. doi: 10.1099/00221287-33-2-213. [DOI] [PubMed] [Google Scholar]
  39. Sheagren J. N. Staphylococcus aureus. The persistent pathogen (second of two parts). N Engl J Med. 1984 May 31;310(22):1437–1442. doi: 10.1056/NEJM198405313102206. [DOI] [PubMed] [Google Scholar]
  40. Smith S. M., Eng R. H., Buccini F. Use of D-lactic acid measurements in the diagnosis of bacterial infections. J Infect Dis. 1986 Oct;154(4):658–664. doi: 10.1093/infdis/154.4.658. [DOI] [PubMed] [Google Scholar]
  41. Stringfellow W. T., Dassy B., Lieb M., Fournier J. M. Staphylococcus aureus growth and type 5 capsular polysaccharide production in synthetic media. Appl Environ Microbiol. 1991 Feb;57(2):618–621. doi: 10.1128/aem.57.2.618-621.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sutherland I. W. Bacterial surface polysaccharides: structure and function. Int Rev Cytol. 1988;113:187–231. doi: 10.1016/s0074-7696(08)60849-9. [DOI] [PubMed] [Google Scholar]
  43. Sutra L., Mendolia C., Rainard P., Poutrel B. Encapsulation of Staphylococcus aureus isolates from mastitic milk: relationship between capsular polysaccharide types 5 and 8 and colony morphology in serum-soft agar, clumping factor, teichoic acid, and protein A. J Clin Microbiol. 1990 Mar;28(3):447–451. doi: 10.1128/jcm.28.3.447-451.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Suttorp N., Fuhrmann M., Tannert-Otto S., Grimminger F., Bhadki S. Pore-forming bacterial toxins potently induce release of nitric oxide in porcine endothelial cells. J Exp Med. 1993 Jul 1;178(1):337–341. doi: 10.1084/jem.178.1.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Suzuki S., Kubo A., Shinano H., Takama K. Inhibition of the electron transport system in Staphylococcus aureus by trimethylamine-N-oxide. Microbios. 1992;71(287):145–148. [PubMed] [Google Scholar]
  46. Tempest D. W., Neijssel O. M. The status of YATP and maintenance energy as biologically interpretable phenomena. Annu Rev Microbiol. 1984;38:459–486. doi: 10.1146/annurev.mi.38.100184.002331. [DOI] [PubMed] [Google Scholar]
  47. Thom S. M., Horobin R. W., Seidler E., Barer M. R. Factors affecting the selection and use of tetrazolium salts as cytochemical indicators of microbial viability and activity. J Appl Bacteriol. 1993 Apr;74(4):433–443. doi: 10.1111/j.1365-2672.1993.tb05151.x. [DOI] [PubMed] [Google Scholar]
  48. Turner W. H. The effect of medium volume and yeast extract diffusate on delta-hemolysin production by five strains of Staphylococcus aureus. J Appl Bacteriol. 1978 Oct;45(2):291–296. doi: 10.1111/j.1365-2672.1978.tb04225.x. [DOI] [PubMed] [Google Scholar]
  49. Urban T., Jarstrand C. Nitroblue tetrazolium (NBT) reduction by bacteria. Some properties of the reaction and its possible use. Acta Pathol Microbiol Scand B. 1979 Aug;87(4):227–233. [PubMed] [Google Scholar]
  50. Vistica D. T., Skehan P., Scudiero D., Monks A., Pittman A., Boyd M. R. Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res. 1991 May 15;51(10):2515–2520. [PubMed] [Google Scholar]
  51. Whitfield C., Valvano M. A. Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria. Adv Microb Physiol. 1993;35:135–246. doi: 10.1016/s0065-2911(08)60099-5. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES