Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Jul;64(7):2467–2473. doi: 10.1128/iai.64.7.2467-2473.1996

Entry and intracellular survival of group B streptococci in J774 macrophages.

P Valenti-Weigand 1, P Benkel 1, M Rohde 1, G S Chhatwal 1
PMCID: PMC174099  PMID: 8698468

Abstract

The mouse macrophage-like cell line J774 was used to analyze opsonin-independent entry and survival of group B streptococci (GBS). Efficient entry of GBS in J774 cells occurred within 5 min postinfection, and streptococci persisted intracellularly without loss of viability for at least 8 h. At 24 h postinfection, 30% of the total intracellular GBS was recovered from macrophages. Inhibition studies using different biochemical modulators of cellular functions showed that bacterial entry seemed to involve nonglycosylated J774 surface structures different from known receptors such as fibronectin-binding integrins. Internalization of GBS by J774 cells occurred by a microfilament-dependent phagocytosis-like process also involving participation of receptor-mediated endocytosis. Prior opsonization of GBS with human serum containing anti-GBS antibodies did not affect bacterial entry but significantly reduced the intracellular survival of GBS. Transmission electron microscopic analysis confirmed these findings and demonstrated that both opsonized and nonopsonized bacteria were contained within phagosomes during the whole infection period. Transmission electron microscopy further revealed that decreased intracellular survival rates of opsonized GBS appeared to be due to increased lysosomal activities of the macrophages. These results suggest that in the absence of opsonins, GBS are able to enter and persist efficiently in macrophages by evading intracellular antibacterial activities commonly associated with opsonin-mediated uptake.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alenghat E., Esterly J. R. Alveolar macrophages in perinatal infants. Pediatrics. 1984 Aug;74(2):221–223. [PubMed] [Google Scholar]
  2. Antal J. M., Cunningham J. V., Goodrum K. J. Opsonin-independent phagocytosis of group B streptococci: role of complement receptor type three. Infect Immun. 1992 Mar;60(3):1114–1121. doi: 10.1128/iai.60.3.1114-1121.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ayoub E. M., Swingle H. Pathogenic mechanisms in neonatal GBS infection. Antibiot Chemother (1971) 1985;35:128–141. doi: 10.1159/000410368. [DOI] [PubMed] [Google Scholar]
  4. Becker I. D., Robinson O. M., Bazán T. S., López-Osuna M., Kretschmer R. R. Bactericidal capacity of newborn phagocytes against group B beta-hemolytic streptococci. Infect Immun. 1981 Nov;34(2):535–539. doi: 10.1128/iai.34.2.535-539.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown E. J. Phagocytosis. Bioessays. 1995 Feb;17(2):109–117. doi: 10.1002/bies.950170206. [DOI] [PubMed] [Google Scholar]
  6. Cao C. X., Silverstein S. C., Neu H. C., Steinberg T. H. J774 macrophages secrete antibiotics via organic anion transporters. J Infect Dis. 1992 Feb;165(2):322–328. doi: 10.1093/infdis/165.2.322. [DOI] [PubMed] [Google Scholar]
  7. Edwards M. S., Baker C. J., Kasper D. L. Opsonic specificity of human antibody to the type III polysaccharide of group B Streptococcus. J Infect Dis. 1979 Dec;140(6):1004–1008. doi: 10.1093/infdis/140.6.1004. [DOI] [PubMed] [Google Scholar]
  8. Falkow S., Isberg R. R., Portnoy D. A. The interaction of bacteria with mammalian cells. Annu Rev Cell Biol. 1992;8:333–363. doi: 10.1146/annurev.cb.08.110192.002001. [DOI] [PubMed] [Google Scholar]
  9. Ferrieri P., Burke B., Nelson J. Production of bacteremia and meningitis in infant rats with group B streptococcal serotypes. Infect Immun. 1980 Mar;27(3):1023–1032. doi: 10.1128/iai.27.3.1023-1032.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Finlay B. B., Falkow S. Common themes in microbial pathogenicity. Microbiol Rev. 1989 Jun;53(2):210–230. doi: 10.1128/mr.53.2.210-230.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Finlay B. B., Falkow S. Comparison of the invasion strategies used by Salmonella cholerae-suis, Shigella flexneri and Yersinia enterocolitica to enter cultured animal cells: endosome acidification is not required for bacterial invasion or intracellular replication. Biochimie. 1988 Aug;70(8):1089–1099. doi: 10.1016/0300-9084(88)90271-4. [DOI] [PubMed] [Google Scholar]
  12. Goldstein E., Lippert W., Warshauer D. Pulmonary alveolar macrophage. Defender against bacterial infection of the lung. J Clin Invest. 1974 Sep;54(3):519–528. doi: 10.1172/JCI107788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goldstein J. L., Anderson R. G., Brown M. S. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979 Jun 21;279(5715):679–685. doi: 10.1038/279679a0. [DOI] [PubMed] [Google Scholar]
  14. Goodrum K. J., McCormick L. L., Schneider B. Group B streptococcus-induced nitric oxide production in murine macrophages is CR3 (CD11b/CD18) dependent. Infect Immun. 1994 Aug;62(8):3102–3107. doi: 10.1128/iai.62.8.3102-3107.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goodrum K. J. Stimulation of complement component C3 synthesis in macrophagelike cell lines by group B streptococci. Infect Immun. 1987 May;55(5):1101–1105. doi: 10.1128/iai.55.5.1101-1105.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Guzman C. A., Rohde M., Bock M., Timmis K. N. Invasion and intracellular survival of Bordetella bronchiseptica in mouse dendritic cells. Infect Immun. 1994 Dec;62(12):5528–5537. doi: 10.1128/iai.62.12.5528-5537.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heesemann J., Laufs R. Double immunofluorescence microscopic technique for accurate differentiation of extracellularly and intracellularly located bacteria in cell culture. J Clin Microbiol. 1985 Aug;22(2):168–175. doi: 10.1128/jcm.22.2.168-175.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hill H. R., Augustine N. H., Williams P. A., Brown E. J., Bohnsack J. F. Mechanism of fibronectin enhancement of group B streptococcal phagocytosis by human neutrophils and culture-derived macrophages. Infect Immun. 1993 Jun;61(6):2334–2339. doi: 10.1128/iai.61.6.2334-2339.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Levy N. J., Kasper D. L. Antibody-independent and -dependent opsonization of group B Streptococcus requires the first component of complement C1. Infect Immun. 1985 Jul;49(1):19–24. doi: 10.1128/iai.49.1.19-24.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moxon E. R., Ostrow P. T. Haemophilus influenzae meningitis in infant rats: role of bacteremia in pathogenesis of age-dependent inflammatory responses in cerebrospinal fluid. J Infect Dis. 1977 Feb;135(2):303–307. doi: 10.1093/infdis/135.2.303. [DOI] [PubMed] [Google Scholar]
  21. Oelschlaeger T. A., Guerry P., Kopecko D. J. Unusual microtubule-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6884–6888. doi: 10.1073/pnas.90.14.6884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Parczyk K., Haase W., Kondor-Koch C. Microtubules are involved in the secretion of proteins at the apical cell surface of the polarized epithelial cell, Madin-Darby canine kidney. J Biol Chem. 1989 Oct 5;264(28):16837–16846. [PubMed] [Google Scholar]
  23. Pierschbacher M., Hayman E. G., Ruoslahti E. Synthetic peptide with cell attachment activity of fibronectin. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1224–1227. doi: 10.1073/pnas.80.5.1224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reynolds H. Y., Newball H. H. Analysis of proteins and respiratory cells obtained from human lungs by bronchial lavage. J Lab Clin Med. 1974 Oct;84(4):559–573. [PubMed] [Google Scholar]
  25. Rubens C. E., Raff H. V., Jackson J. C., Chi E. Y., Bielitzki J. T., Hillier S. L. Pathophysiology and histopathology of group B streptococcal sepsis in Macaca nemestrina primates induced after intraamniotic inoculation: evidence for bacterial cellular invasion. J Infect Dis. 1991 Aug;164(2):320–330. doi: 10.1093/infdis/164.2.320. [DOI] [PubMed] [Google Scholar]
  26. Rubens C. E., Smith S., Hulse M., Chi E. Y., van Belle G. Respiratory epithelial cell invasion by group B streptococci. Infect Immun. 1992 Dec;60(12):5157–5163. doi: 10.1128/iai.60.12.5157-5163.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Saukkonen K., Cabellos C., Burroughs M., Prasad S., Tuomanen E. Integrin-mediated localization of Bordetella pertussis within macrophages: role in pulmonary colonization. J Exp Med. 1991 May 1;173(5):1143–1149. doi: 10.1084/jem.173.5.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schlegel R., Dickson R. B., Willingham M. C., Pastan I. H. Amantadine and dansylcadaverine inhibit vesicular stomatitis virus uptake and receptor-mediated endocytosis of alpha 2-macroglobulin. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2291–2295. doi: 10.1073/pnas.79.7.2291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sherman M. P., Johnson J. T., Rothlein R., Hughes B. J., Smith C. W., Anderson D. C. Role of pulmonary phagocytes in host defense against group B streptococci in preterm versus term rabbit lung. J Infect Dis. 1992 Oct;166(4):818–826. doi: 10.1093/infdis/166.4.818. [DOI] [PubMed] [Google Scholar]
  30. Sherman M. P., Lehrer R. I. Oxidative metabolism of neonatal and adult rabbit lung macrophages stimulated with opsonized group B streptococci. Infect Immun. 1985 Jan;47(1):26–30. doi: 10.1128/iai.47.1.26-30.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shigeoka A. O., Hall R. T., Hemming V. G., Allred C. D., Hill H. R. Role of antibody and complement in opsonization of group B streptococci. Infect Immun. 1978 Jul;21(1):34–40. doi: 10.1128/iai.21.1.34-40.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  33. Talay S. R., Valentin-Weigand P., Jerlström P. G., Timmis K. N., Chhatwal G. S. Fibronectin-binding protein of Streptococcus pyogenes: sequence of the binding domain involved in adherence of streptococci to epithelial cells. Infect Immun. 1992 Sep;60(9):3837–3844. doi: 10.1128/iai.60.9.3837-3844.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Valentin-Weigand P., Chhatwal G. S. Correlation of epithelial cell invasiveness of group B streptococci with clinical source of isolation. Microb Pathog. 1995 Aug;19(2):83–91. doi: 10.1006/mpat.1995.0048. [DOI] [PubMed] [Google Scholar]
  35. Wileman T., Harding C., Stahl P. Receptor-mediated endocytosis. Biochem J. 1985 Nov 15;232(1):1–14. doi: 10.1042/bj2320001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Williams A. E. Relationship between intracellular survival in macrophages and pathogenicity of Streptococcus suis type 2 isolates. Microb Pathog. 1990 Mar;8(3):189–196. doi: 10.1016/0882-4010(90)90046-s. [DOI] [PubMed] [Google Scholar]
  37. Wilson C. B., Jacobs R. F., Smith A. L. Cellular antibiotic pharmacology. Semin Perinatol. 1982 Apr;6(2):205–213. [PubMed] [Google Scholar]
  38. Wright S. D., Levin S. M., Jong M. T., Chad Z., Kabbash L. G. CR3 (CD11b/CD18) expresses one binding site for Arg-Gly-Asp-containing peptides and a second site for bacterial lipopolysaccharide. J Exp Med. 1989 Jan 1;169(1):175–183. doi: 10.1084/jem.169.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wright S. D., Meyer B. C. Fibronectin receptor of human macrophages recognizes the sequence Arg-Gly-Asp-Ser. J Exp Med. 1985 Aug 1;162(2):762–767. doi: 10.1084/jem.162.2.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yang K. D., Augustine N. H., Shaio M. F., Bohnsack J. F., Hill H. R. Effects of fibronectin on actin organization and respiratory burst activity in neutrophils, monocytes, and macrophages. J Cell Physiol. 1994 Feb;158(2):347–353. doi: 10.1002/jcp.1041580217. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES