Skip to main content
Occupational and Environmental Medicine logoLink to Occupational and Environmental Medicine
. 2005 May;62(5):325–329. doi: 10.1136/oem.2004.017459

Poisson regression analysis of ungrouped data

D Loomis 1, D Richardson 1, L Elliott 1
PMCID: PMC1741003  PMID: 15837854

Abstract

Background: Poisson regression is routinely used for analysis of epidemiological data from studies of large occupational cohorts. It is typically implemented as a grouped method of data analysis in which all exposure and covariate information is categorised and person-time and events are tabulated.

Aims: To describe an alternative approach to Poisson regression analysis using single units of person-time without grouping.

Methods: Data for simulated and empirical cohorts were analysed by Poisson regression. In analyses of simulated data, effect estimates derived via Poisson regression without grouping were compared to those obtained under proportional hazards regression. Analyses of empirical data for a cohort of 138 900 electrical workers were used to illustrate how the ungrouped approach may be applied in analyses of actual occupational cohorts.

Results: Using simulated data, Poisson regression analyses of ungrouped person-time data yield results equivalent to those obtained via proportional hazards regression: the results of both methods gave unbiased estimates of the "true" association specified for the simulation. Analyses of empirical data confirm that grouped and ungrouped analyses provide identical results when the same models are specified. However, bias may arise when exposure-response trends are estimated via Poisson regression analyses in which exposure scores, such as category means or midpoints, are assigned to grouped data.

Conclusions: Poisson regression analysis of ungrouped person-time data is a useful tool that can avoid bias associated with categorising exposure data and assigning exposure scores, and facilitate direct assessment of the consequences of exposure categorisation and score assignment on regression results.

Full Text

The Full Text of this article is available as a PDF (83.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brenner H., Loomis D. Varied forms of bias due to nondifferential error in measuring exposure. Epidemiology. 1994 Sep;5(5):510–517. [PubMed] [Google Scholar]
  2. Checkoway H., Pearce N., Dement J. M. Design and conduct of occupational epidemiology studies: II. Analysis of cohort data. Am J Ind Med. 1989;15(4):375–394. doi: 10.1002/ajim.4700150403. [DOI] [PubMed] [Google Scholar]
  3. Dosemeci M., Wacholder S., Lubin J. H. Does nondifferential misclassification of exposure always bias a true effect toward the null value? Am J Epidemiol. 1990 Oct;132(4):746–748. doi: 10.1093/oxfordjournals.aje.a115716. [DOI] [PubMed] [Google Scholar]
  4. Flegal K. M., Keyl P. M., Nieto F. J. Differential misclassification arising from nondifferential errors in exposure measurement. Am J Epidemiol. 1991 Nov 15;134(10):1233–1244. doi: 10.1093/oxfordjournals.aje.a116026. [DOI] [PubMed] [Google Scholar]
  5. Frome E. L., Checkoway H. Epidemiologic programs for computers and calculators. Use of Poisson regression models in estimating incidence rates and ratios. Am J Epidemiol. 1985 Feb;121(2):309–323. doi: 10.1093/oxfordjournals.aje.a114001. [DOI] [PubMed] [Google Scholar]
  6. Gilbert E. S., Cragle D. L., Wiggs L. D. Updated analyses of combined mortality data for workers at the Hanford Site, Oak Ridge National Laboratory, and Rocky Flats Weapons Plant. Radiat Res. 1993 Dec;136(3):408–421. [PubMed] [Google Scholar]
  7. Greenland S. Dose-response and trend analysis in epidemiology: alternatives to categorical analysis. Epidemiology. 1995 Jul;6(4):356–365. doi: 10.1097/00001648-199507000-00005. [DOI] [PubMed] [Google Scholar]
  8. Kheifets L. I., Gilbert E. S., Sussman S. S., Guénel P., Sahl J. D., Savitz D. A., Thériault G. Comparative analyses of the studies of magnetic fields and cancer in electric utility workers: studies from France, Canada, and the United States. Occup Environ Med. 1999 Aug;56(8):567–574. doi: 10.1136/oem.56.8.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Krewski D., Cardis E., Zeise L., Feron V. J. Empirical approaches to risk estimation and prediction. IARC Sci Publ. 1999;(131):131–178. [PubMed] [Google Scholar]
  10. Kromhout H., Loomis D. P., Mihlan G. J., Peipins L. A., Kleckner R. C., Iriye R., Savitz D. A. Assessment and grouping of occupational magnetic field exposure in five electric utility companies. Scand J Work Environ Health. 1995 Feb;21(1):43–50. doi: 10.5271/sjweh.7. [DOI] [PubMed] [Google Scholar]
  11. Loomis A., Kromhout H., Kleckner R. C., Savitz D. A. Effects of the analytical treatment of exposure data on associations of cancer and occupational magnetic field exposure. Am J Ind Med. 1998 Jul;34(1):49–56. doi: 10.1002/(sici)1097-0274(199807)34:1<49::aid-ajim7>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  12. Loomis D. P., Peipins L. A., Browning S. R., Howard R. L., Kromhout H., Savitz D. A. Organization and classification of work history data in industry-wide studies: an application to the electric power industry. Am J Ind Med. 1994 Sep;26(3):413–425. doi: 10.1002/ajim.4700260314. [DOI] [PubMed] [Google Scholar]
  13. McDonald J. C., Harris J., Armstrong B. Mortality in a cohort of vermiculite miners exposed to fibrous amphibole in Libby, Montana. Occup Environ Med. 2004 Apr;61(4):363–366. doi: 10.1136/oem.2003.008649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pearce N., Checkoway H., Dement J. Exponential models for analyses of time-related factors, illustrated with asbestos textile worker mortality data. J Occup Med. 1988 Jun;30(6):517–522. [PubMed] [Google Scholar]
  15. Richardson D. B., Loomis D. The impact of exposure categorisation for grouped analyses of cohort data. Occup Environ Med. 2004 Nov;61(11):930–935. doi: 10.1136/oem.2004.014159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Richardson D. B., Wing S. Greater sensitivity to ionizing radiation at older age: follow-up of workers at Oak Ridge National Laboratory through 1990. Int J Epidemiol. 1999 Jun;28(3):428–436. doi: 10.1093/ije/28.3.428. [DOI] [PubMed] [Google Scholar]
  17. Richardson David B. Power calculations for survival analyses via Monte Carlo estimation. Am J Ind Med. 2003 Nov;44(5):532–539. doi: 10.1002/ajim.10310. [DOI] [PubMed] [Google Scholar]
  18. Savitz D. A., Loomis D. P. Magnetic field exposure in relation to leukemia and brain cancer mortality among electric utility workers. Am J Epidemiol. 1995 Jan 15;141(2):123–134. doi: 10.1093/oxfordjournals.aje.a117400. [DOI] [PubMed] [Google Scholar]
  19. Steenland K., Deddens J. A., Zhao S. Biases in estimating the effect of cumulative exposure in log-linear models when estimated exposure levels are assigned. Scand J Work Environ Health. 2000 Feb;26(1):37–43. doi: 10.5271/sjweh.508. [DOI] [PubMed] [Google Scholar]
  20. Steenland Kyle, Deddens James A. A practical guide to dose-response analyses and risk assessment in occupational epidemiology. Epidemiology. 2004 Jan;15(1):63–70. doi: 10.1097/01.ede.0000100287.45004.e7. [DOI] [PubMed] [Google Scholar]
  21. Thurston Sally W., Eisen Ellen A., Schwartz Joel. Smoothing in survival models: an application to workers exposed to metalworking fluids. Epidemiology. 2002 Nov;13(6):685–692. doi: 10.1097/00001648-200211000-00013. [DOI] [PubMed] [Google Scholar]
  22. Wartenberg D., Northridge M. Defining exposure in case-control studies: a new approach. Am J Epidemiol. 1991 May 15;133(10):1058–1071. doi: 10.1093/oxfordjournals.aje.a115815. [DOI] [PubMed] [Google Scholar]
  23. Wing S., Shy C. M., Wood J. L., Wolf S., Cragle D. L., Frome E. L. Mortality among workers at Oak Ridge National Laboratory. Evidence of radiation effects in follow-up through 1984. JAMA. 1991 Mar 20;265(11):1397–1402. [PubMed] [Google Scholar]

Articles from Occupational and Environmental Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES