Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Jul;64(7):2515–2522. doi: 10.1128/iai.64.7.2515-2522.1996

Cytotoxic-T-lymphocyte responses to epitopes of listeriolysin O and p60 following infection with Listeria monocytogenes.

H G Bouwer 1, D J Hinrichs 1
PMCID: PMC174105  PMID: 8698474

Abstract

In order to test the influence of the cell surface density of a specific H2-Kd-presented epitope on the subsequent level of the cytotoxic-T-lymphocyte (CTL) response directed against the epitope, we investigated the CTL response to two secreted products of Listeria monocytogenes from mice immunized with viable L. monocytogenes. We determined the response to the H2-Kd-presented amino acid 91 to 99 (aa91-99) immunodominant peptide of listeriolysin O (LLO) and to the aa217-225 immunodominant peptide of p60. The p60-derived peptide appears at the cell surface as an H2-Kd-complexed peptide at a level sixfold higher than that of LLO aa91-99. CTL frequency analysis of anti-LLO- or anti-p60-specific CTLs from mice immunized with wild-type L. monocytogenes showed that the numbers of immune spleen cell-derived CTLs specific for the two peptides were essentially equivalent. We have also found that Listeria-specific CTL populations lyse target cells pulsed with the p60 aa217-225 peptide with a magnitude of the lytic response markedly less than that for targets pulsed with the LLO aa91-99 peptide. Additionally, immunization with mutants of L. monocytogenes which do not stimulate anti-LLO-specific CTLs does not alter the CTL frequency of anti-p60-specific effector cells, with levels of anti-p60-specific CTLs similar to those seen in mice immunized with wild-type L. monocytogenes. These results suggest that the relative cell surface density of major histocompatibility complex class I-presented L. monocytogenes-derived epitopes is but one of the criteria which determine the magnitude of the cytotoxic effector cell response that develops in antilisterial immunity.

Full Text

The Full Text of this article is available as a PDF (418.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldridge J. R., Barry R. A., Hinrichs D. J. Expression of systemic protection and delayed-type hypersensitivity to Listeria monocytogenes is mediated by different T-cell subsets. Infect Immun. 1990 Mar;58(3):654–658. doi: 10.1128/iai.58.3.654-658.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barry R. A., Bouwer H. G., Portnoy D. A., Hinrichs D. J. Pathogenicity and immunogenicity of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun. 1992 Apr;60(4):1625–1632. doi: 10.1128/iai.60.4.1625-1632.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barry R. A., Hinrichs D. J. Enhanced adoptive transfer of immunity to Listeria monocytogenes after in vitro culture of murine spleen cells with concanavalin A. Infect Immun. 1982 Feb;35(2):560–565. doi: 10.1128/iai.35.2.560-565.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berche P., Gaillard J. L., Richard S. Invasiveness and intracellular growth of Listeria monocytogenes. Infection. 1988;16 (Suppl 2):S145–S148. doi: 10.1007/BF01639738. [DOI] [PubMed] [Google Scholar]
  5. Bielecki J., Youngman P., Connelly P., Portnoy D. A. Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature. 1990 May 10;345(6271):175–176. doi: 10.1038/345175a0. [DOI] [PubMed] [Google Scholar]
  6. Bishop D. K., Hinrichs D. J. Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J Immunol. 1987 Sep 15;139(6):2005–2009. [PubMed] [Google Scholar]
  7. Bouwer H. G., Gibbins B. L., Jones S., Hinrichs D. J. Antilisterial immunity includes specificity to listeriolysin O (LLO) and non-LLO-derived determinants. Infect Immun. 1994 Mar;62(3):1039–1045. doi: 10.1128/iai.62.3.1039-1045.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bouwer H. G., Lindahl K. F., Baldridge J. R., Wagner C. R., Barry R. A., Hinrichs D. J. An H2-T MHC class Ib molecule presents Listeria monocytogenes-derived antigen to immune CD8+ cytotoxic T cells. J Immunol. 1994 Jun 1;152(11):5352–5360. [PubMed] [Google Scholar]
  9. Bouwer H. G., Nelson C. S., Gibbins B. L., Portnoy D. A., Hinrichs D. J. Listeriolysin O is a target of the immune response to Listeria monocytogenes. J Exp Med. 1992 Jun 1;175(6):1467–1471. doi: 10.1084/jem.175.6.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brunt L. M., Portnoy D. A., Unanue E. R. Presentation of Listeria monocytogenes to CD8+ T cells requires secretion of hemolysin and intracellular bacterial growth. J Immunol. 1990 Dec 1;145(11):3540–3546. [PubMed] [Google Scholar]
  11. Camilli A., Goldfine H., Portnoy D. A. Listeria monocytogenes mutants lacking phosphatidylinositol-specific phospholipase C are avirulent. J Exp Med. 1991 Mar 1;173(3):751–754. doi: 10.1084/jem.173.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
  13. Flamm R. K., Hinrichs D. J., Thomashow M. F. Cloning of a gene encoding a major secreted polypeptide of Listeria monocytogenes and its potential use as a species-specific probe. Appl Environ Microbiol. 1989 Sep;55(9):2251–2256. doi: 10.1128/aem.55.9.2251-2256.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harty J. T., Bevan M. J. CD8+ T cells specific for a single nonamer epitope of Listeria monocytogenes are protective in vivo. J Exp Med. 1992 Jun 1;175(6):1531–1538. doi: 10.1084/jem.175.6.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harty J. T., Pamer E. G. CD8 T lymphocytes specific for the secreted p60 antigen protect against Listeria monocytogenes infection. J Immunol. 1995 May 1;154(9):4642–4650. [PubMed] [Google Scholar]
  16. Jones S., Portnoy D. A. Characterization of Listeria monocytogenes pathogenesis in a strain expressing perfringolysin O in place of listeriolysin O. Infect Immun. 1994 Dec;62(12):5608–5613. doi: 10.1128/iai.62.12.5608-5613.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kuhn M., Goebel W. Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect Immun. 1989 Jan;57(1):55–61. doi: 10.1128/iai.57.1.55-61.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pamer E. G. Direct sequence identification and kinetic analysis of an MHC class I-restricted Listeria monocytogenes CTL epitope. J Immunol. 1994 Jan 15;152(2):686–694. [PubMed] [Google Scholar]
  19. Pamer E. G., Harty J. T., Bevan M. J. Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature. 1991 Oct 31;353(6347):852–855. doi: 10.1038/353852a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Portnoy D. A., Jacks P. S., Hinrichs D. J. Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med. 1988 Apr 1;167(4):1459–1471. doi: 10.1084/jem.167.4.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Taswell C. Limiting dilution assays for the determination of immunocompetent cell frequencies. I. Data analysis. J Immunol. 1981 Apr;126(4):1614–1619. [PubMed] [Google Scholar]
  22. Villanueva M. S., Fischer P., Feen K., Pamer E. G. Efficiency of MHC class I antigen processing: a quantitative analysis. Immunity. 1994 Sep;1(6):479–489. doi: 10.1016/1074-7613(94)90090-6. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES