Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Jul;64(7):2649–2656. doi: 10.1128/iai.64.7.2649-2656.1996

The major surface glycoprotein of Trypanosoma cruzi amastigotes are ligands of the human serum mannose-binding protein.

S J Kahn 1, M Wleklinski 1, R A Ezekowitz 1, D Coder 1, A Aruffo 1, A Farr 1
PMCID: PMC174122  PMID: 8698491

Abstract

Trypanosoma cruzi, an obligate intracellular protozoan parasite, chronically infects mammals and causes Chagas' disease in humans. T. cruzi evasion of the mammalian immune response and establishment of chronic infection are poorly understood. During T. cruzi infection, amastigotes and trypomastigotes disseminate in the mammalian host and invade multiple cell types. Parasite surface carbohydrates and mammalian lectins have been implicated in the invasion of mammalian cells. A recent study has demonstrated that the human mannose-binding protein and the macrophage mannose receptor, two mammalian C-type lectins, bind to T. cruzi (S. J. Kahn, M. Wleklinski, A. Aruffo, A. Farr, D. Coder, and M. Kahn, J. Exp. Med. 182:1243-1258,1995). In this report we identify the major surface glycoproteins, including the SA85-1 glycoproteins, as T. cruzi ligands of the mannose-binding protein. Further characterization of the interaction between the mannose-binding protein and T. cruzi demonstrates that (i) the SA85-1 glycoproteins are expressed by amastigotes and trypomastigotes but only amastigotes express the mannose-binding protein ligand, (ii) treatment of amastigotes with alpha-mannosidase inhibits the binding of mannose-binding protein, and (iii) amastigote binding of mannose-binding protein is stable despite the spontaneous shedding of some glycoproteins from its surface. Together, the data indicate that developmentally regulated glycosylation of surface glycoproteins controls the expression of ligands that affect the interactions between T. cruzi and mannose-binding protein. It has been established that the binding of mannose-binding protein to microorganisms facilitates their uptake into phagocytic cells. Preferential opsonization of amastigotes with mannose-binding proteins may account for their clearance from the circulation and may contribute to the parasite's ability to invade different cell types.

Full Text

The Full Text of this article is available as a PDF (571.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abuin G., Colli W., de Souza W., Alves M. J. A surface antigen of Trypanosoma cruzi involved in cell invasion (Tc-85) is heterogeneous in expression and molecular constitution. Mol Biochem Parasitol. 1989 Jul;35(3):229–237. doi: 10.1016/0166-6851(89)90209-0. [DOI] [PubMed] [Google Scholar]
  2. Alves M. J., Abuin G., Kuwajima V. Y., Colli W. Partial inhibition of trypomastigote entry into cultured mammalian cells by monoclonal antibodies against a surface glycoprotein of Trypanosoma cruzi. Mol Biochem Parasitol. 1986 Oct;21(1):75–82. doi: 10.1016/0166-6851(86)90081-2. [DOI] [PubMed] [Google Scholar]
  3. Andrews N. W., Hong K. S., Robbins E. S., Nussenzweig V. Stage-specific surface antigens expressed during the morphogenesis of vertebrate forms of Trypanosoma cruzi. Exp Parasitol. 1987 Dec;64(3):474–484. doi: 10.1016/0014-4894(87)90062-2. [DOI] [PubMed] [Google Scholar]
  4. Andrews N. W., Katzin A. M., Colli W. Mapping of surface glycoproteins of Trypanosoma cruzi by two-dimensional electrophoresis. A correlation with the cell invasion capacity. Eur J Biochem. 1984 May 2;140(3):599–604. doi: 10.1111/j.1432-1033.1984.tb08144.x. [DOI] [PubMed] [Google Scholar]
  5. Boschetti M. A., Piras M. M., Henríquez D., Piras R. The interaction of a Trypanosoma cruzi surface protein with Vero cells and its relationship with parasite adhesion. Mol Biochem Parasitol. 1987 Jun;24(2):175–184. doi: 10.1016/0166-6851(87)90104-6. [DOI] [PubMed] [Google Scholar]
  6. Campetella O., Sánchez D., Cazzulo J. J., Frasch A. C. A superfamily of Trypanosoma cruzi surface antigens. Parasitol Today. 1992 Nov;8(11):378–381. doi: 10.1016/0169-4758(92)90175-2. [DOI] [PubMed] [Google Scholar]
  7. Doyle P., de la Canal L., Engel J. C., Parodi A. J. Characterization of the mechanism of protein glycosylation and the structure of glycoconjugates in tissue culture trypomastigotes and intracellular amastigotes of Trypanosoma cruzi. Mol Biochem Parasitol. 1986 Oct;21(1):93–101. doi: 10.1016/0166-6851(86)90083-6. [DOI] [PubMed] [Google Scholar]
  8. Drickamer K., Taylor M. E. Biology of animal lectins. Annu Rev Cell Biol. 1993;9:237–264. doi: 10.1146/annurev.cb.09.110193.001321. [DOI] [PubMed] [Google Scholar]
  9. Engel J. C., Parodi A. J. Trypanosoma cruzi cells undergo an alteration in protein N-glycosylation upon differentiation. J Biol Chem. 1985 Aug 25;260(18):10105–10110. [PubMed] [Google Scholar]
  10. Ezekowitz R. A. Ante-antibody immunity. Curr Biol. 1991 Feb;1(1):60–62. doi: 10.1016/0960-9822(91)90132-g. [DOI] [PubMed] [Google Scholar]
  11. Fouts D. L., Ruef B. J., Ridley P. T., Wrightsman R. A., Peterson D. S., Manning J. E. Nucleotide sequence and transcription of a trypomastigote surface antigen gene of Trypanosoma cruzi. Mol Biochem Parasitol. 1991 Jun;46(2):189–200. doi: 10.1016/0166-6851(91)90043-6. [DOI] [PubMed] [Google Scholar]
  12. Giordano R., Chammas R., Veiga S. S., Colli W., Alves M. J. An acidic component of the heterogeneous Tc-85 protein family from the surface of Trypanosoma cruzi is a laminin binding glycoprotein. Mol Biochem Parasitol. 1994 May;65(1):85–94. doi: 10.1016/0166-6851(94)90117-1. [DOI] [PubMed] [Google Scholar]
  13. Green P. J., Feizi T., Stoll M. S., Thiel S., Prescott A., McConville M. J. Recognition of the major cell surface glycoconjugates of Leishmania parasites by the human serum mannan-binding protein. Mol Biochem Parasitol. 1994 Aug;66(2):319–328. doi: 10.1016/0166-6851(94)90158-9. [DOI] [PubMed] [Google Scholar]
  14. Hernández-Munaín C., Fernández M. A., Alcina A., Fresno M. Characterization of a glycosyl-phosphatidylinositol-anchored membrane protein from Trypanosoma cruzi. Infect Immun. 1991 Apr;59(4):1409–1416. doi: 10.1128/iai.59.4.1409-1416.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Iida K., Whitlow M. B., Nussenzweig V. Amastigotes of Trypanosoma cruzi escape destruction by the terminal complement components. J Exp Med. 1989 Mar 1;169(3):881–891. doi: 10.1084/jem.169.3.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Joiner K. A., daSilva W. D., Rimoldi M. T., Hammer C. H., Sher A., Kipnis T. L. Biochemical characterization of a factor produced by trypomastigotes of Trypanosoma cruzi that accelerates the decay of complement C3 convertases. J Biol Chem. 1988 Aug 15;263(23):11327–11335. [PubMed] [Google Scholar]
  17. Kahn S., Colbert T. G., Wallace J. C., Hoagland N. A., Eisen H. The major 85-kDa surface antigen of the mammalian-stage forms of Trypanosoma cruzi is a family of sialidases. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4481–4485. doi: 10.1073/pnas.88.10.4481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kahn S., Kahn M., van Voorhis W. C., Goshorn A., Strand A., Hoagland N., Eisen H., Pennathur S. SA85-1 proteins of Trypanosoma cruzi lack sialidase activity. Mol Biochem Parasitol. 1993 Jul;60(1):149–152. doi: 10.1016/0166-6851(93)90038-y. [DOI] [PubMed] [Google Scholar]
  19. Kahn S., Van Voorhis W. C., Eisen H. The major 85-kD surface antigen of the mammalian form of Trypanosoma cruzi is encoded by a large heterogeneous family of simultaneously expressed genes. J Exp Med. 1990 Aug 1;172(2):589–597. doi: 10.1084/jem.172.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kahn S., Wleklinski M., Aruffo A., Farr A., Coder D., Kahn M. Trypanosoma cruzi amastigote adhesion to macrophages is facilitated by the mannose receptor. J Exp Med. 1995 Nov 1;182(5):1243–1258. doi: 10.1084/jem.182.5.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Katzin A. M., Colli W. Lectin receptors in Trypanosoma cruzi. An N-acetyl-D-glucosamine-containing surface glycoprotein specific for the trypomastigote stage. Biochim Biophys Acta. 1983 Jan 19;727(2):403–411. doi: 10.1016/0005-2736(83)90425-x. [DOI] [PubMed] [Google Scholar]
  22. Ley V., Andrews N. W., Robbins E. S., Nussenzweig V. Amastigotes of Trypanosoma cruzi sustain an infective cycle in mammalian cells. J Exp Med. 1988 Aug 1;168(2):649–659. doi: 10.1084/jem.168.2.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lu J. H., Thiel S., Wiedemann H., Timpl R., Reid K. B. Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2C1s2 complex, of the classical pathway of complement, without involvement of C1q. J Immunol. 1990 Mar 15;144(6):2287–2294. [PubMed] [Google Scholar]
  24. Malhotra R., Haurum J., Thiel S., Sim R. B. Interaction of C1q receptor with lung surfactant protein A. Eur J Immunol. 1992 Jun;22(6):1437–1445. doi: 10.1002/eji.1830220616. [DOI] [PubMed] [Google Scholar]
  25. Matsushita M., Fujita T. Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. J Exp Med. 1992 Dec 1;176(6):1497–1502. doi: 10.1084/jem.176.6.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mortara R. A. Trypanosoma cruzi: amastigotes and trypomastigotes interact with different structures on the surface of HeLa cells. Exp Parasitol. 1991 Jul;73(1):1–14. doi: 10.1016/0014-4894(91)90002-e. [DOI] [PubMed] [Google Scholar]
  27. Ouaissi M. A., Cornette J., Capron A. Identification and isolation of Trypanosoma cruzi trypomastigote cell surface protein with properties expected of a fibronectin receptor. Mol Biochem Parasitol. 1986 Jun;19(3):201–211. doi: 10.1016/0166-6851(86)90002-2. [DOI] [PubMed] [Google Scholar]
  28. Parodi A. J., Pollevick G. D., Mautner M., Buschiazzo A., Sanchez D. O., Frasch A. C. Identification of the gene(s) coding for the trans-sialidase of Trypanosoma cruzi. EMBO J. 1992 May;11(5):1705–1710. doi: 10.1002/j.1460-2075.1992.tb05221.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pereira M. E., Loures M. A., Villalta F., Andrade A. F. Lectin receptors as markers for Trypanosoma cruzi. Developmental stages and a study of the interaction of wheat germ agglutinin with sialic acid residues on epimastigote cells. J Exp Med. 1980 Nov 1;152(5):1375–1392. doi: 10.1084/jem.152.5.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pereira M. E., Mejia J. S., Ortega-Barria E., Matzilevich D., Prioli R. P. The Trypanosoma cruzi neuraminidase contains sequences similar to bacterial neuraminidases, YWTD repeats of the low density lipoprotein receptor, and type III modules of fibronectin. J Exp Med. 1991 Jul 1;174(1):179–191. doi: 10.1084/jem.174.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Plata F., Garcia Pons F., Eisen H. Antigenic polymorphism of Trypanosoma cruzi: clonal analysis of trypomastigote surface antigens. Eur J Immunol. 1984 May;14(5):392–399. doi: 10.1002/eji.1830140503. [DOI] [PubMed] [Google Scholar]
  32. Pollevick G. D., Affranchino J. L., Frasch A. C., Sánchez D. O. The complete sequence of a shed acute-phase antigen of Trypanosoma cruzi. Mol Biochem Parasitol. 1991 Aug;47(2):247–250. doi: 10.1016/0166-6851(91)90185-9. [DOI] [PubMed] [Google Scholar]
  33. Sastry K., Ezekowitz R. A. Collectins: pattern recognition molecules involved in first line host defense. Curr Opin Immunol. 1993 Feb;5(1):59–66. doi: 10.1016/0952-7915(93)90082-4. [DOI] [PubMed] [Google Scholar]
  34. Schenkman S., Eichinger D. Trypanosoma cruzi trans-sialidase and cell invasion. Parasitol Today. 1993 Jun;9(6):218–222. doi: 10.1016/0169-4758(93)90017-a. [DOI] [PubMed] [Google Scholar]
  35. Schweinle J. E., Ezekowitz R. A., Tenner A. J., Kuhlman M., Joiner K. A. Human mannose-binding protein activates the alternative complement pathway and enhances serum bactericidal activity on a mannose-rich isolate of Salmonella. J Clin Invest. 1989 Dec;84(6):1821–1829. doi: 10.1172/JCI114367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schweinle J. E., Nishiyasu M., Ding T. Q., Sastry K., Gillies S. D., Ezekowitz R. A. Truncated forms of mannose-binding protein multimerize and bind to mannose-rich Salmonella montevideo but fail to activate complement in vitro. J Biol Chem. 1993 Jan 5;268(1):364–370. [PubMed] [Google Scholar]
  37. Super M., Gillies S. D., Foley S., Sastry K., Schweinle J. E., Silverman V. J., Ezekowitz R. A. Distinct and overlapping functions of allelic forms of human mannose binding protein. Nat Genet. 1992 Sep;2(1):50–55. doi: 10.1038/ng0992-50. [DOI] [PubMed] [Google Scholar]
  38. Takle G. B., Cross G. A. An 85-kilodalton surface antigen gene family of Trypanosoma cruzi encodes polypeptides homologous to bacterial neuraminidases. Mol Biochem Parasitol. 1991 Oct;48(2):185–198. doi: 10.1016/0166-6851(91)90114-l. [DOI] [PubMed] [Google Scholar]
  39. Uemura H., Schenkman S., Nussenzweig V., Eichinger D. Only some members of a gene family in Trypanosoma cruzi encode proteins that express both trans-sialidase and neuraminidase activities. EMBO J. 1992 Nov;11(11):3837–3844. doi: 10.1002/j.1460-2075.1992.tb05476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Van Voorhis W. C., Barrett L., Koelling R., Farr A. G. FL-160 proteins of Trypanosoma cruzi are expressed from a multigene family and contain two distinct epitopes that mimic nervous tissues. J Exp Med. 1993 Aug 1;178(2):681–694. doi: 10.1084/jem.178.2.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Weis W. I., Drickamer K., Hendrickson W. A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature. 1992 Nov 12;360(6400):127–134. doi: 10.1038/360127a0. [DOI] [PubMed] [Google Scholar]
  42. Zingales B., Andrews N. W., Kuwajima V. Y., Colli W. Cell surface antigens of Trypanosoma cruzi: possible correlation with the interiorization process in mammalian cells. Mol Biochem Parasitol. 1982 Aug;6(2):111–124. doi: 10.1016/0166-6851(82)90069-x. [DOI] [PubMed] [Google Scholar]
  43. Zingales B., Katzin A. M., Arruda M. V., Colli W. Correlation of tunicamycin-sensitive surface glycoproteins from Trypanosoma cruzi with parasite interiorization into mammalian cells. Mol Biochem Parasitol. 1985 Jun;16(1):21–34. doi: 10.1016/0166-6851(85)90046-5. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES