Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Jul;64(7):2657–2665. doi: 10.1128/iai.64.7.2657-2665.1996

The major fimbrial subunit of Bordetella pertussis binds to sulfated sugars.

C A Geuijen 1, R J Willems 1, F R Mooi 1
PMCID: PMC174123  PMID: 8698492

Abstract

Bordetella pertussis fimbriae are composed of major and minor subunits, and recently it was shown that the minor fimbrial subunit binds to Vla-5, a receptor located on monocytes (W. Hazenbos, C. Geuijen, B. van den Berg, F. Mooi, and R. van Furth, J. Infect. Dis. 171:924-929, 1995). Here we present evidence that the major subunits bind to sulfated sugars, which are ubiquitous in the respiratory tract. Binding was observed to chondroitin sulfate, heparan sulfate, and dextran sulfate but not to dextran. Removal of the minor subunit from fimbriae did not significantly affect binding to sulfated sugars, indicating that the major subunit alone is sufficient for this binding. Fimbriae were also able to bind HEp-2 cells, which are known to display glycoconjugates on their surface. This binding was not dependent on the presence of the minor subunit. However, binding was dependent on the sulfation state of the glycoconjugates, since inhibition of the sulfation resulted in a significant reduction of fimbria binding. The specificity of fimbria binding was further characterized by using heparan sulfate-derived disaccharides in inhibition assays. Two disaccharides were highly effective inhibitors, and it was observed that both the degree of sulfation and the arrangement of the sulfate groups on the disaccharides were important for binding to fimbriae. B. pertussis bacteria also bound to sulfated sugars and HEp-2 cells, and analysis of B. pertussis mutants indicated that both filamentous hemagglutinin and fimbriae were required for this binding. A host protein present in the extracellular matrix, fibronectin, has binding activities similar to those of B. pertussis fimbriae, binding to both Vla-5 and sulfated sugars. Two regions in the major fimbrial subunit were identified which showed similarity with fibronectin peptides which bind to sulfated sugars. Thus, B. pertussis fimbriae exemplify molecular mimicry and may co-opt host processes by mimicking natural ligand-receptor interactions.

Full Text

The Full Text of this article is available as a PDF (370.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ascencio F., Fransson L. A., Wadström T. Affinity of the gastric pathogen Helicobacter pylori for the N-sulphated glycosaminoglycan heparan sulphate. J Med Microbiol. 1993 Apr;38(4):240–244. doi: 10.1099/00222615-38-4-240. [DOI] [PubMed] [Google Scholar]
  2. Ashworth L. A., Dowsett A. B., Irons L. I., Robinson A. The location of surface antigens of Bordetella pertussis by immuno-electron microscopy. Dev Biol Stand. 1985;61:143–151. [PubMed] [Google Scholar]
  3. Ashworth L. A., Irons L. I., Dowsett A. B. Antigenic relationship between serotype-specific agglutinogen and fimbriae of Bordetella pertussis. Infect Immun. 1982 Sep;37(3):1278–1281. doi: 10.1128/iai.37.3.1278-1281.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baeuerle P. A., Huttner W. B. Chlorate--a potent inhibitor of protein sulfation in intact cells. Biochem Biophys Res Commun. 1986 Dec 15;141(2):870–877. doi: 10.1016/s0006-291x(86)80253-4. [DOI] [PubMed] [Google Scholar]
  5. Brennan M. J., Hannah J. H., Leininger E. Adhesion of Bordetella pertussis to sulfatides and to the GalNAc beta 4Gal sequence found in glycosphingolipids. J Biol Chem. 1991 Oct 5;266(28):18827–18831. [PubMed] [Google Scholar]
  6. Cardin A. D., Weintraub H. J. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis. 1989 Jan-Feb;9(1):21–32. doi: 10.1161/01.atv.9.1.21. [DOI] [PubMed] [Google Scholar]
  7. Charles I. G., Dougan G., Pickard D., Chatfield S., Smith M., Novotny P., Morrissey P., Fairweather N. F. Molecular cloning and characterization of protective outer membrane protein P.69 from Bordetella pertussis. Proc Natl Acad Sci U S A. 1989 May;86(10):3554–3558. doi: 10.1073/pnas.86.10.3554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Compton T., Nowlin D. M., Cooper N. R. Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology. 1993 Apr;193(2):834–841. doi: 10.1006/viro.1993.1192. [DOI] [PubMed] [Google Scholar]
  9. Cowell J. L., Zhang J. M., Urisu A., Suzuki A., Steven A. C., Liu T., Liu T. Y., Manclark C. R. Purification and characterization of serotype 6 fimbriae from Bordetella pertussis and comparison of their properties with serotype 2 fimbriae. Infect Immun. 1987 Apr;55(4):916–922. doi: 10.1128/iai.55.4.916-922.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edwards K. M., Decker M. D., Graham B. S., Mezzatesta J., Scott J., Hackell J. Adult immunization with acellular pertussis vaccine. JAMA. 1993 Jan 6;269(1):53–56. [PubMed] [Google Scholar]
  11. Groen J., van der Groen G., Hoofd G., Osterhaus A. Comparison of immunofluorescence and enzyme-linked immunosorbent assays for the serology of Hantaan virus infections. J Virol Methods. 1989 Feb;23(2):195–203. doi: 10.1016/0166-0934(89)90133-x. [DOI] [PubMed] [Google Scholar]
  12. Hannah J. H., Menozzi F. D., Renauld G., Locht C., Brennan M. J. Sulfated glycoconjugate receptors for the Bordetella pertussis adhesin filamentous hemagglutinin (FHA) and mapping of the heparin-binding domain on FHA. Infect Immun. 1994 Nov;62(11):5010–5019. doi: 10.1128/iai.62.11.5010-5019.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hazenbos W. L., Geuijen C. A., van den Berg B. M., Mooi F. R., van Furth R. Bordetella pertussis fimbriae bind to human monocytes via the minor fimbrial subunit FimD. J Infect Dis. 1995 Apr;171(4):924–929. doi: 10.1093/infdis/171.4.924. [DOI] [PubMed] [Google Scholar]
  14. Hazenbos W. L., van den Berg B. M., Geuijen C. W., Mooi F. R., van Furth R. Binding of FimD on Bordetella pertussis to very late antigen-5 on monocytes activates complement receptor type 3 via protein tyrosine kinases. J Immunol. 1995 Oct 15;155(8):3972–3978. [PubMed] [Google Scholar]
  15. Irons L. I., Ashworth L. A., Robinson A. Release and purification of fimbriae from Bordetella pertussis. Dev Biol Stand. 1985;61:153–163. [PubMed] [Google Scholar]
  16. Isaacs R. D. Borrelia burgdorferi bind to epithelial cell proteoglycans. J Clin Invest. 1994 Feb;93(2):809–819. doi: 10.1172/JCI117035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Keller K. M., Brauer P. R., Keller J. M. Modulation of cell surface heparan sulfate structure by growth of cells in the presence of chlorate. Biochemistry. 1989 Oct 3;28(20):8100–8107. doi: 10.1021/bi00446a021. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Leininger E., Roberts M., Kenimer J. G., Charles I. G., Fairweather N., Novotny P., Brennan M. J. Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):345–349. doi: 10.1073/pnas.88.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Liang O. D., Ascencio F., Fransson L. A., Wadström T. Binding of heparan sulfate to Staphylococcus aureus. Infect Immun. 1992 Mar;60(3):899–906. doi: 10.1128/iai.60.3.899-906.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Livey I., Duggleby C. J., Robinson A. Cloning and nucleotide sequence analysis of the serotype 2 fimbrial subunit gene of Bordetella pertussis. Mol Microbiol. 1987 Sep;1(2):203–209. doi: 10.1111/j.1365-2958.1987.tb00513.x. [DOI] [PubMed] [Google Scholar]
  22. Locht C., Geoffroy M. C., Renauld G. Common accessory genes for the Bordetella pertussis filamentous hemagglutinin and fimbriae share sequence similarities with the papC and papD gene families. EMBO J. 1992 Sep;11(9):3175–3183. doi: 10.1002/j.1460-2075.1992.tb05394.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McKay E. J., Laurell C. B. The interaction of heparin with plasma proteins. Demonstration of different binding sites for antithrombin III complexes and antithrombin III. J Lab Clin Med. 1980 Jan;95(1):69–80. [PubMed] [Google Scholar]
  24. Menozzi F. D., Gantiez C., Locht C. Interaction of the Bordetella pertussis filamentous hemagglutinin with heparin. FEMS Microbiol Lett. 1991 Feb;62(1):59–64. doi: 10.1111/j.1574-6968.1991.tb04417.x. [DOI] [PubMed] [Google Scholar]
  25. Menozzi F. D., Mutombo R., Renauld G., Gantiez C., Hannah J. H., Leininger E., Brennan M. J., Locht C. Heparin-inhibitable lectin activity of the filamentous hemagglutinin adhesin of Bordetella pertussis. Infect Immun. 1994 Mar;62(3):769–778. doi: 10.1128/iai.62.3.769-778.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mooi F. R., Jansen W. H., Brunings H., Gielen H., van der Heide H. G., Walvoort H. C., Guinee P. A. Construction and analysis of Bordetella pertussis mutants defective in the production of fimbriae. Microb Pathog. 1992 Feb;12(2):127–135. doi: 10.1016/0882-4010(92)90115-5. [DOI] [PubMed] [Google Scholar]
  27. Nader H. B., Porcionatto M. A., Tersariol I. L., Pinhal M. A., Oliveira F. W., Moraes C. T., Dietrich C. P. Purification and substrate specificity of heparitinase I and heparitinase II from Flavobacterium heparinum. Analyses of the heparin and heparan sulfate degradation products by 13C NMR spectroscopy. J Biol Chem. 1990 Oct 5;265(28):16807–16813. [PubMed] [Google Scholar]
  28. Okazaki K., Matsuzaki T., Sugahara Y., Okada J., Hasebe M., Iwamura Y., Ohnishi M., Kanno T., Shimizu M., Honda E. BHV-1 adsorption is mediated by the interaction of glycoprotein gIII with heparinlike moiety on the cell surface. Virology. 1991 Apr;181(2):666–670. doi: 10.1016/0042-6822(91)90900-v. [DOI] [PubMed] [Google Scholar]
  29. Ortega-Barria E., Pereira M. E. A novel T. cruzi heparin-binding protein promotes fibroblast adhesion and penetration of engineered bacteria and trypanosomes into mammalian cells. Cell. 1991 Oct 18;67(2):411–421. doi: 10.1016/0092-8674(91)90192-2. [DOI] [PubMed] [Google Scholar]
  30. Pancake S. J., Holt G. D., Mellouk S., Hoffman S. L. Malaria sporozoites and circumsporozoite proteins bind specifically to sulfated glycoconjugates. J Cell Biol. 1992 Jun;117(6):1351–1357. doi: 10.1083/jcb.117.6.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Poolman J. T., Kuipers B., Vogel M. L., Hamstra H. J., Nagel J. Description of a hybridoma bank towards Bordetella pertussis toxin and surface antigens. Microb Pathog. 1990 Jun;8(6):377–382. doi: 10.1016/0882-4010(90)90024-k. [DOI] [PubMed] [Google Scholar]
  32. Preston N. W. Prevalent serotypes of Bordetella pertussis in non-vaccinated communities. J Hyg (Lond) 1976 Aug;77(1):85–91. doi: 10.1017/s0022172400055546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Relman D. A., Domenighini M., Tuomanen E., Rappuoli R., Falkow S. Filamentous hemagglutinin of Bordetella pertussis: nucleotide sequence and crucial role in adherence. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2637–2641. doi: 10.1073/pnas.86.8.2637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Relman D., Tuomanen E., Falkow S., Golenbock D. T., Saukkonen K., Wright S. D. Recognition of a bacterial adhesion by an integrin: macrophage CR3 (alpha M beta 2, CD11b/CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell. 1990 Jun 29;61(7):1375–1382. doi: 10.1016/0092-8674(90)90701-f. [DOI] [PubMed] [Google Scholar]
  35. Roberts M., Fairweather N. F., Leininger E., Pickard D., Hewlett E. L., Robinson A., Hayward C., Dougan G., Charles I. G. Construction and characterization of Bordetella pertussis mutants lacking the vir-regulated P.69 outer membrane protein. Mol Microbiol. 1991 Jun;5(6):1393–1404. doi: 10.1111/j.1365-2958.1991.tb00786.x. [DOI] [PubMed] [Google Scholar]
  36. Robinson A., Gorringe A. R., Funnell S. G., Fernandez M. Serospecific protection of mice against intranasal infection with Bordetella pertussis. Vaccine. 1989 Aug;7(4):321–324. doi: 10.1016/0264-410x(89)90193-x. [DOI] [PubMed] [Google Scholar]
  37. Rozdzinski E., Sandros J., van der Flier M., Young A., Spellerberg B., Bhattacharyya C., Straub J., Musso G., Putney S., Starzyk R. Inhibition of leukocyte-endothelial cell interactions and inflammation by peptides from a bacterial adhesin which mimic coagulation factor X. J Clin Invest. 1995 Mar;95(3):1078–1085. doi: 10.1172/JCI117754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stibitz S., Garletts T. L. Derivation of a physical map of the chromosome of Bordetella pertussis Tohama I. J Bacteriol. 1992 Dec;174(23):7770–7777. doi: 10.1128/jb.174.23.7770-7777.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  40. Tuomanen E., Towbin H., Rosenfelder G., Braun D., Larson G., Hansson G. C., Hill R. Receptor analogs and monoclonal antibodies that inhibit adherence of Bordetella pertussis to human ciliated respiratory epithelial cells. J Exp Med. 1988 Jul 1;168(1):267–277. doi: 10.1084/jem.168.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Weiss A. A., Hewlett E. L., Myers G. A., Falkow S. Tn5-induced mutations affecting virulence factors of Bordetella pertussis. Infect Immun. 1983 Oct;42(1):33–41. doi: 10.1128/iai.42.1.33-41.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Willems R. J., Geuijen C., van der Heide H. G., Matheson M., Robinson A., Versluis L. F., Ebberink R., Theelen J., Mooi F. R. Isolation of a putative fimbrial adhesin from Bordetella pertussis and the identification of its gene. Mol Microbiol. 1993 Aug;9(3):623–634. doi: 10.1111/j.1365-2958.1993.tb01722.x. [DOI] [PubMed] [Google Scholar]
  43. Willems R. J., Geuijen C., van der Heide H. G., Renauld G., Bertin P., van den Akker W. M., Locht C., Mooi F. R. Mutational analysis of the Bordetella pertussis fim/fha gene cluster: identification of a gene with sequence similarities to haemolysin accessory genes involved in export of FHA. Mol Microbiol. 1994 Jan;11(2):337–347. doi: 10.1111/j.1365-2958.1994.tb00314.x. [DOI] [PubMed] [Google Scholar]
  44. Willems R. J., van der Heide H. G., Mooi F. R. Characterization of a Bordetella pertussis fimbrial gene cluster which is located directly downstream of the filamentous haemagglutinin gene. Mol Microbiol. 1992 Sep;6(18):2661–2671. doi: 10.1111/j.1365-2958.1992.tb01443.x. [DOI] [PubMed] [Google Scholar]
  45. Willems R., Paul A., van der Heide H. G., ter Avest A. R., Mooi F. R. Fimbrial phase variation in Bordetella pertussis: a novel mechanism for transcriptional regulation. EMBO J. 1990 Sep;9(9):2803–2809. doi: 10.1002/j.1460-2075.1990.tb07468.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Willemsen P. T., de Graaf F. K. Age and serotype dependent binding of K88 fimbriae to porcine intestinal receptors. Microb Pathog. 1992 May;12(5):367–375. doi: 10.1016/0882-4010(92)90099-a. [DOI] [PubMed] [Google Scholar]
  47. WuDunn D., Spear P. G. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol. 1989 Jan;63(1):52–58. doi: 10.1128/jvi.63.1.52-58.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yanagishita M., Hascall V. C. Cell surface heparan sulfate proteoglycans. J Biol Chem. 1992 May 15;267(14):9451–9454. [PubMed] [Google Scholar]
  49. Zhang J. M., Cowell J. L., Steven A. C., Carter P. H., McGrath P. P., Manclark C. R. Purification and characterization of fimbriae isolated from Bordetella pertussis. Infect Immun. 1985 May;48(2):422–427. doi: 10.1128/iai.48.2.422-427.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES