Abstract
Peripheral blood monocytes (Mo) of normal human donors simultaneously exhibit two subsets differing in their functional activity towards the facultative intracellular bacterium Listeria monocytogenes. One subset (on average, 25% of total Mo) was characteristically able to ingest a large number of L. monocytogenes bacteria and permitted intracellular growth of these bacteria. The other Mo subpopulation (on average, 75% of total Mo) was far less active in phagocytosing L. monocytogenes and restricted intracellular L. monocytogenes growth. Electron microscopy revealed that the Listeria-permissive Mo subset allowed the bacteria to escape to the cytosol, a mechanism by which these bacteria evade the lethal attack of phagocytes. The Listeria-restrictive Mo subset, on the other hand, confined the bacteria to the phagolysosomes, where they were exposed to the killing mechanisms of the Mo. Permissiveness for L. monocytogenes growth was further associated with differences in the capacity of the Mo subsets to synthesize tumor necrosis factor alpha TNF-alpha), an important mediator in the defense against intracellular bacteria. Following challenge with L. monocytogenes, the Listeria-restrictive Mo subset secreted two to six times more TNF-alpha than did the Listeria-permissive Mo subset. Enhanced TNF-alpha secretion was paralleled by increased accumulation of TNF-alpha mRNA as assessed by quantitative PCR. Despite these functional differences, the two Mo subsets were indistinguishable with respect to expression of cell surface markers known to be involved in adherence and phagocytosis of microbes. A speculative physiological role of the two Mo subsets may lie in the dual function of Mo as microbicidal effector cells and accessory cells for antigen-specific immune reactions.
Full Text
The Full Text of this article is available as a PDF (695.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bancroft G. J., Schreiber R. D., Unanue E. R. Natural immunity: a T-cell-independent pathway of macrophage activation, defined in the scid mouse. Immunol Rev. 1991 Dec;124:5–24. doi: 10.1111/j.1600-065x.1991.tb00613.x. [DOI] [PubMed] [Google Scholar]
- Bancroft G. J., Sheehan K. C., Schreiber R. D., Unanue E. R. Tumor necrosis factor is involved in the T cell-independent pathway of macrophage activation in scid mice. J Immunol. 1989 Jul 1;143(1):127–130. [PubMed] [Google Scholar]
- Bermudez L. E., Young L. S., Enkel H. Interaction of Mycobacterium avium complex with human macrophages: roles of membrane receptors and serum proteins. Infect Immun. 1991 May;59(5):1697–1702. doi: 10.1128/iai.59.5.1697-1702.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bermudez L. E., Young L. S. Tumor necrosis factor, alone or in combination with IL-2, but not IFN-gamma, is associated with macrophage killing of Mycobacterium avium complex. J Immunol. 1988 May 1;140(9):3006–3013. [PubMed] [Google Scholar]
- Bhakdi S., Klonisch T., Nuber P., Fischer W. Stimulation of monokine production by lipoteichoic acids. Infect Immun. 1991 Dec;59(12):4614–4620. doi: 10.1128/iai.59.12.4614-4620.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown E. J. Complement receptors and phagocytosis. Curr Opin Immunol. 1991 Feb;3(1):76–82. doi: 10.1016/0952-7915(91)90081-b. [DOI] [PubMed] [Google Scholar]
- Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
- Chehadeh H. E., Zerlauth G., Mannhalter J. W. Video image analysis of quantitative competitive PCR products: comparison of different evaluation methods. Biotechniques. 1995 Jan;18(1):26–28. [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Cole P., Brostoff J. Intracellular killing of Listeria monocytogenes by activated macrophages (Mackaness system) is due to antibiotic. Nature. 1975 Aug 7;256(5517):515–517. doi: 10.1038/256515a0. [DOI] [PubMed] [Google Scholar]
- Denis M., Gregg E. O. Studies on cytokine activation of listericidal activity in murine macrophages. Can J Microbiol. 1990 Oct;36(10):671–675. doi: 10.1139/m90-114. [DOI] [PubMed] [Google Scholar]
- Drevets D. A., Campbell P. A. Macrophage phagocytosis: use of fluorescence microscopy to distinguish between extracellular and intracellular bacteria. J Immunol Methods. 1991 Aug 28;142(1):31–38. doi: 10.1016/0022-1759(91)90289-r. [DOI] [PubMed] [Google Scholar]
- Drevets D. A., Campbell P. A. Roles of complement and complement receptor type 3 in phagocytosis of Listeria monocytogenes by inflammatory mouse peritoneal macrophages. Infect Immun. 1991 Aug;59(8):2645–2652. doi: 10.1128/iai.59.8.2645-2652.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drevets D. A., Canono B. P., Campbell P. A. Listericidal and nonlistericidal mouse macrophages differ in complement receptor type 3-mediated phagocytosis of L. monocytogenes and in preventing escape of the bacteria into the cytoplasm. J Leukoc Biol. 1992 Jul;52(1):70–79. doi: 10.1002/jlb.52.1.70. [DOI] [PubMed] [Google Scholar]
- Dunn P. L., North R. J. Resolution of primary murine listeriosis and acquired resistance to lethal secondary infection can be mediated predominantly by Thy-1+ CD4- CD8- cells. J Infect Dis. 1991 Nov;164(5):869–877. doi: 10.1093/infdis/164.5.869. [DOI] [PubMed] [Google Scholar]
- Endres S., Fülle H. J., Sinha B., Stoll D., Dinarello C. A., Gerzer R., Weber P. C. Cyclic nucleotides differentially regulate the synthesis of tumour necrosis factor-alpha and interleukin-1 beta by human mononuclear cells. Immunology. 1991 Jan;72(1):56–60. [PMC free article] [PubMed] [Google Scholar]
- Friedman A., Beller D. I. The effect of adherence on the in vitro induction of cytocidal activity by macrophages. Immunology. 1987 Aug;61(4):469–474. [PMC free article] [PubMed] [Google Scholar]
- Hahn H., Kaufmann S. H. The role of cell-mediated immunity in bacterial infections. Rev Infect Dis. 1981 Nov-Dec;3(6):1221–1250. doi: 10.1093/clinids/3.6.1221. [DOI] [PubMed] [Google Scholar]
- Havell E. A. Evidence that tumor necrosis factor has an important role in antibacterial resistance. J Immunol. 1989 Nov 1;143(9):2894–2899. [PubMed] [Google Scholar]
- Havell E. A. Production of tumor necrosis factor during murine listeriosis. J Immunol. 1987 Dec 15;139(12):4225–4231. [PubMed] [Google Scholar]
- Kaufmann S. H. Immunity to bacteria. Curr Opin Immunol. 1989;2(3):353–359. doi: 10.1016/0952-7915(89)90141-6. [DOI] [PubMed] [Google Scholar]
- Kaufmann S. H., Reddehase M. J. Infection of phagocytic cells. Curr Opin Immunol. 1989 Oct;2(1):43–49. doi: 10.1016/0952-7915(89)90096-4. [DOI] [PubMed] [Google Scholar]
- Kiderlen A. F., Kaufmann S. H., Lohmann-Matthes M. L. Protection of mice against the intracellular bacterium Listeria monocytogenes by recombinant immune interferon. Eur J Immunol. 1984 Oct;14(10):964–967. doi: 10.1002/eji.1830141019. [DOI] [PubMed] [Google Scholar]
- Leopardi R., Vainionpä R., Hurme M., Siljander P., Salmi A. A. Measles virus infection enhances IL-1 beta but reduces tumor necrosis factor-alpha expression in human monocytes. J Immunol. 1992 Oct 1;149(7):2397–2401. [PubMed] [Google Scholar]
- Nacy C. A., Meierovics A. I., Belosevic M., Green S. J. Tumor necrosis factor-alpha: central regulatory cytokine in the induction of macrophage antimicrobial activities. Pathobiology. 1991;59(3):182–184. doi: 10.1159/000163640. [DOI] [PubMed] [Google Scholar]
- Nakane A., Minagawa T., Kato K. Endogenous tumor necrosis factor (cachectin) is essential to host resistance against Listeria monocytogenes infection. Infect Immun. 1988 Oct;56(10):2563–2569. doi: 10.1128/iai.56.10.2563-2569.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norris D. A., Morris R. M., Sanderson R. J., Kohler P. F. Isolation of functional subsets of human peripheral blood monocytes. J Immunol. 1979 Jul;123(1):166–172. [PubMed] [Google Scholar]
- Piatak M., Jr, Luk K. C., Williams B., Lifson J. D. Quantitative competitive polymerase chain reaction for accurate quantitation of HIV DNA and RNA species. Biotechniques. 1993 Jan;14(1):70–81. [PubMed] [Google Scholar]
- Pryjma J., Mytar B., Loppnow H., Ernst M., Zembala M., Flad H. D. FcR+ and FcR- monocytes differentially secrete monokines during pokeweed mitogen-induced T-cell-monocyte interactions. Immunology. 1992 Feb;75(2):355–360. [PMC free article] [PubMed] [Google Scholar]
- Schlesinger L. S., Horwitz M. A. Phagocytosis of Mycobacterium leprae by human monocyte-derived macrophages is mediated by complement receptors CR1 (CD35), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) and IFN-gamma activation inhibits complement receptor function and phagocytosis of this bacterium. J Immunol. 1991 Sep 15;147(6):1983–1994. [PubMed] [Google Scholar]
- Schook L. B., Lockwood J. F., Yang S. D., Myers M. J. Dimethylnitrosamine (DMN)-induced IL-1 beta, TNF-alpha, and IL-6 inflammatory cytokine expression. Toxicol Appl Pharmacol. 1992 Sep;116(1):110–116. doi: 10.1016/0041-008x(92)90151-h. [DOI] [PubMed] [Google Scholar]
- Siebert P. D., Larrick J. W. PCR MIMICS: competitive DNA fragments for use as internal standards in quantitative PCR. Biotechniques. 1993 Feb;14(2):244–249. [PubMed] [Google Scholar]
- Spiteri M. A., Clarke S. W., Poulter L. W. Isolation of phenotypically and functionally distinct macrophage subpopulations from human bronchoalveolar lavage. Eur Respir J. 1992 Jun;5(6):717–726. [PubMed] [Google Scholar]
- Szabo G., Miller-Graziano C. L., Wu J. Y., Takayama T., Kodys K. Differential tumor necrosis factor production by human monocyte subsets. J Leukoc Biol. 1990 Mar;47(3):206–216. doi: 10.1002/jlb.47.3.206. [DOI] [PubMed] [Google Scholar]
- Takasuka N., Tokunaga T., Akagawa K. S. Preexposure of macrophages to low doses of lipopolysaccharide inhibits the expression of tumor necrosis factor-alpha mRNA but not of IL-1 beta mRNA. J Immunol. 1991 Jun 1;146(11):3824–3830. [PubMed] [Google Scholar]
- Tilney L. G., Connelly P. S., Portnoy D. A. Actin filament nucleation by the bacterial pathogen, Listeria monocytogenes. J Cell Biol. 1990 Dec;111(6 Pt 2):2979–2988. doi: 10.1083/jcb.111.6.2979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolf H. M., Mannhalter J. W., Salzmann H. C., Göttlicher J., Ahmad R., Eibl M. M. Phagocytosis of serum-opsonized zymosan down-regulates the expression of CR3 and FcRI in the membrane of human monocytes. J Immunol. 1988 Nov 15;141(10):3537–3543. [PubMed] [Google Scholar]
- Wright S. D., Silverstein S. C. Tumor-promoting phorbol esters stimulate C3b and C3b' receptor-mediated phagocytosis in cultured human monocytes. J Exp Med. 1982 Oct 1;156(4):1149–1164. doi: 10.1084/jem.156.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zerlauth G., Eibl M. M., Mannhalter J. W. Induction of anti-mycobacterial and anti-listerial activity of human monocytes requires different activation signals. Clin Exp Immunol. 1991 Jul;85(1):90–97. doi: 10.1111/j.1365-2249.1991.tb05688.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ziegler-Heitbrock H. W., Blumenstein M., Käfferlein E., Kieper D., Petersmann I., Endres S., Flegel W. A., Northoff H., Riethmüller G., Haas J. G. In vitro desensitization to lipopolysaccharide suppresses tumour necrosis factor, interleukin-1 and interleukin-6 gene expression in a similar fashion. Immunology. 1992 Feb;75(2):264–268. [PMC free article] [PubMed] [Google Scholar]
- Zuckerman S. H., Evans G. F. Endotoxin tolerance: in vivo regulation of tumor necrosis factor and interleukin-1 synthesis is at the transcriptional level. Cell Immunol. 1992 Apr;140(2):513–519. doi: 10.1016/0008-8749(92)90216-c. [DOI] [PubMed] [Google Scholar]
