Abstract
We recently evaluated several tissue culture model systems for the study of invasion and intracellular multiplication of Mycobacterium tuberculosis. These model systems include a human alveolar pneumocyte epithelial cell line, a murine macrophage cell line (J774), and fresh human peripheral blood-derived macrophages. Our data indicated that the initial level of association of M. tuberculosis with human alveolar pneumocyte cells (2%) was less than that observed with fresh human peripheral blood macrophages (9%) or J774 murine macrophages (13%) within 6 h of the addition of the bacteria. M. tuberculosis replicated in association with the pneumocyte cells by more than 55-fold by day 7 postinfection. In contrast, total bacteria] growth in the J774 cells and human macrophages was considerably less, with increases of only fourfold and threefold, respectively, over the same 7-day period. Amikacin, an aminoglycoside antimicrobial agent, was added to inhibit the growth of extracellular bacteria after the initial 6-h infection period. Decreases in viable counts were observed in all three cell cultures within the first 3 days after infection. However, unlike the case with either macrophage culture, intracellular bacterial CFU obtained from the infected pneumocytes increased by fourfold by day 7 after the addition of amikacin. These data indicate that M. tuberculosis infects and multiplies intracellularly in human lung epithelial cells and that these cells may be an alternative in vitro model for the study of intracellular multiplication of M. tuberculosis in the human lung.
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arruda S., Bomfim G., Knights R., Huima-Byron T., Riley L. W. Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science. 1993 Sep 10;261(5127):1454–1457. doi: 10.1126/science.8367727. [DOI] [PubMed] [Google Scholar]
- Bermudez L. E. Infection of "nonprofessional phagocytes" with Mycobacterium avium complex. Clin Immunol Immunopathol. 1991 Nov;61(2 Pt 1):225–235. doi: 10.1016/s0090-1229(05)80026-1. [DOI] [PubMed] [Google Scholar]
- Bermudez L. E., Young L. S. Factors affecting invasion of HT-29 and HEp-2 epithelial cells by organisms of the Mycobacterium avium complex. Infect Immun. 1994 May;62(5):2021–2026. doi: 10.1128/iai.62.5.2021-2026.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birkness K. A., Swisher B. L., White E. H., Long E. G., Ewing E. P., Jr, Quinn F. D. A tissue culture bilayer model to study the passage of Neisseria meningitidis. Infect Immun. 1995 Feb;63(2):402–409. doi: 10.1128/iai.63.2.402-409.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaparas S. D. Immunity in tuberculosis. Bull World Health Organ. 1982;60(4):447–462. [PMC free article] [PubMed] [Google Scholar]
- Cianciotto N. P., Stamos J. K., Kamp D. W. Infectivity of Legionella pneumophila mip mutant for alveolar epithelial cells. Curr Microbiol. 1995 Apr;30(4):247–250. doi: 10.1007/BF00293641. [DOI] [PubMed] [Google Scholar]
- Crowle A. J., Elkins N., May M. H. Effectiveness of ofloxacin against Mycobacterium tuberculosis and Mycobacterium avium, and rifampin against M. tuberculosis in cultured human macrophages. Am Rev Respir Dis. 1988 May;137(5):1141–1146. doi: 10.1164/ajrccm/137.5.1141. [DOI] [PubMed] [Google Scholar]
- Crowle A. J., Ross E. J., May M. H. Inhibition by 1,25(OH)2-vitamin D3 of the multiplication of virulent tubercle bacilli in cultured human macrophages. Infect Immun. 1987 Dec;55(12):2945–2950. doi: 10.1128/iai.55.12.2945-2950.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crowle A. J., Sbarbaro J. A., Judson F. N., Douvas G. S., May M. H. Inhibition by streptomycin of tubercle bacilli within cultured human macrophages. Am Rev Respir Dis. 1984 Nov;130(5):839–844. doi: 10.1164/arrd.1984.130.5.839. [DOI] [PubMed] [Google Scholar]
- Dannenberg A. M., Jr Immune mechanisms in the pathogenesis of pulmonary tuberculosis. Rev Infect Dis. 1989 Mar-Apr;11 (Suppl 2):S369–S378. doi: 10.1093/clinids/11.supplement_2.s369. [DOI] [PubMed] [Google Scholar]
- Dannenberg A. M., Jr Pathogenesis of pulmonary tuberculosis. Am Rev Respir Dis. 1982 Mar;125(3 Pt 2):25–29. doi: 10.1164/arrd.1982.125.3P2.25. [DOI] [PubMed] [Google Scholar]
- Douvas G. S., Berger E. M., Repine J. E., Crowle A. J. Natural mycobacteriostatic activity in human monocyte-derived adherent cells. Am Rev Respir Dis. 1986 Jul;134(1):44–48. doi: 10.1164/arrd.1986.134.1.44. [DOI] [PubMed] [Google Scholar]
- Edwards D., Kirkpatrick C. H. The immunology of mycobacterial diseases. Am Rev Respir Dis. 1986 Nov;134(5):1062–1071. doi: 10.1164/arrd.1986.134.5.1062. [DOI] [PubMed] [Google Scholar]
- Falkow S. Bacterial entry into eukaryotic cells. Cell. 1991 Jun 28;65(7):1099–1102. doi: 10.1016/0092-8674(91)90003-h. [DOI] [PubMed] [Google Scholar]
- Finlay B. B., Falkow S. Comparison of the invasion strategies used by Salmonella cholerae-suis, Shigella flexneri and Yersinia enterocolitica to enter cultured animal cells: endosome acidification is not required for bacterial invasion or intracellular replication. Biochimie. 1988 Aug;70(8):1089–1099. doi: 10.1016/0300-9084(88)90271-4. [DOI] [PubMed] [Google Scholar]
- Fischer L. J., Quinn F. D., White E. H., King C. H. Intracellular growth and cytotoxicity of Mycobacterium haemophilum in a human epithelial cell line (Hec-1-B). Infect Immun. 1996 Jan;64(1):269–276. doi: 10.1128/iai.64.1.269-276.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flynn J. L., Goldstein M. M., Triebold K. J., Koller B., Bloom B. R. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12013–12017. doi: 10.1073/pnas.89.24.12013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fok J. S., Ho R. S., Arora P. K., Harding G. E., Smith D. W. Host-parasite relationships in experimental airborne tuberculosis. V. Lack of hematogenous dissemination of Mycobacterium tuberculosis to the lungs in animals vaccinated with Bacille Calmette-Guérin. J Infect Dis. 1976 Feb;133(2):137–144. doi: 10.1093/infdis/133.2.137. [DOI] [PubMed] [Google Scholar]
- Isberg R. R. Discrimination between intracellular uptake and surface adhesion of bacterial pathogens. Science. 1991 May 17;252(5008):934–938. doi: 10.1126/science.1674624. [DOI] [PubMed] [Google Scholar]
- Joiner K. A., Fuhrman S. A., Miettinen H. M., Kasper L. H., Mellman I. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science. 1990 Aug 10;249(4969):641–646. doi: 10.1126/science.2200126. [DOI] [PubMed] [Google Scholar]
- Kanai K., Kondo E., Yasuda T. Ultrastructural changes in the alveolar epithelium in response to mycobacterial infection. Jpn J Med Sci Biol. 1979 Dec;32(6):315–325. doi: 10.7883/yoken1952.32.315. [DOI] [PubMed] [Google Scholar]
- Kaufmann S. H. CD8+ T lymphocytes in intracellular microbial infections. Immunol Today. 1988 Jun;9(6):168–174. doi: 10.1016/0167-5699(88)91292-3. [DOI] [PubMed] [Google Scholar]
- Kochi A. Tuberculosis: distribution, risk factors, mortality. Immunobiology. 1994 Oct;191(4-5):325–336. doi: 10.1016/S0171-2985(11)80437-7. [DOI] [PubMed] [Google Scholar]
- Lee C. A., Falkow S. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4304–4308. doi: 10.1073/pnas.87.11.4304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MACKANESS G. B., SMITH N. The bactericidal action of isoniazid, streptomycin and terramycin on extracellular and intracellular tubercle bacilli. Am Rev Tuberc. 1953 Mar;67(3):322–340. doi: 10.1164/art.1953.67.3.322. [DOI] [PubMed] [Google Scholar]
- Mapother M. E., Songer J. G. In vitro interaction of Mycobacterium avium with intestinal epithelial cells. Infect Immun. 1984 Jul;45(1):67–73. doi: 10.1128/iai.45.1.67-73.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller V. L., Falkow S. Evidence for two genetic loci in Yersinia enterocolitica that can promote invasion of epithelial cells. Infect Immun. 1988 May;56(5):1242–1248. doi: 10.1128/iai.56.5.1242-1248.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mody C. H., Paine R., 3rd, Shahrabadi M. S., Simon R. H., Pearlman E., Eisenstein B. I., Toews G. B. Legionella pneumophila replicates within rat alveolar epithelial cells. J Infect Dis. 1993 May;167(5):1138–1145. doi: 10.1093/infdis/167.5.1138. [DOI] [PubMed] [Google Scholar]
- Murray C. J., Styblo K., Rouillon A. Tuberculosis in developing countries: burden, intervention and cost. Bull Int Union Tuberc Lung Dis. 1990 Mar;65(1):6–24. [PubMed] [Google Scholar]
- Nunn P., Felten M. Surveillance of resistance to antituberculosis drugs in developing countries. Tuber Lung Dis. 1994 Jun;75(3):163–167. doi: 10.1016/0962-8479(94)90001-9. [DOI] [PubMed] [Google Scholar]
- Orme I. M. The role of CD8+ T cells in immunity to tuberculosis infection. Trends Microbiol. 1993 Jun;1(3):77–78. doi: 10.1016/0966-842x(93)90109-5. [DOI] [PubMed] [Google Scholar]
- Ralph P., Ito M., Broxmeyer H. E., Nakoinz I. Corticosteroids block newly induced but not constitutive functions of macrophage cell lines: myeloid colony-stimulating activity production, latex phagocytosis, and antibody-dependent lysis of RBC and tumor targets. J Immunol. 1978 Jul;121(1):300–303. [PubMed] [Google Scholar]
- Ramakrishnan L., Falkow S. Mycobacterium marinum persists in cultured mammalian cells in a temperature-restricted fashion. Infect Immun. 1994 Aug;62(8):3222–3229. doi: 10.1128/iai.62.8.3222-3229.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHEPARD C. C. A comparison of the growth of selected mycobacteria in HeLa, monkey kidney, and human amnion cells in tissue culture. J Exp Med. 1958 Feb 1;107(2):237–246. doi: 10.1084/jem.107.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHEPARD C. C. Growth characteristics of tubercle bacilli and certain other mycobacteria in HeLa cells. J Exp Med. 1957 Jan 1;105(1):39–48. doi: 10.1084/jem.105.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlesinger L. S. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol. 1993 Apr 1;150(7):2920–2930. [PubMed] [Google Scholar]
- Snyderman R., Pike M. C., Fischer D. G., Koren H. S. Biologic and biochemical activities of continuous macrophage cell lines P388D1 and J774.1. J Immunol. 1977 Dec;119(6):2060–2066. [PubMed] [Google Scholar]
- Vareldzis B. P., Grosset J., de Kantor I., Crofton J., Laszlo A., Felten M., Raviglione M. C., Kochi A. Drug-resistant tuberculosis: laboratory issues. World Health Organization recommendations. Tuber Lung Dis. 1994 Feb;75(1):1–7. doi: 10.1016/0962-8479(94)90096-5. [DOI] [PubMed] [Google Scholar]
