Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Jul;64(7):2700–2708. doi: 10.1128/iai.64.7.2700-2708.1996

Amino acid residues in the pro region of Escherichia coli heat-stable enterotoxin I that affect efficiency of translocation across the inner membrane.

H Yamanaka 1, K Okamoto 1
PMCID: PMC174129  PMID: 8698498

Abstract

Escherichia coli heat-stable enterotoxin Ip (STIp), which is a typical extracellular toxin consisting of 18 amino acid residues, is synthesized as a precursor consisting of pre (amino acid residues 1 to 19), pro (amino acid residues 20 to 54), and mature (amino acid residues 55 to 72) regions. Though the pre region functions as a conventional leader peptide that guides the following region to cross the inner membrane, the role of the pro region in the maturation pathway remains to be elucidated. We previously indicated that the sequence from residues 29 to 38 in the pro region increases the efficiency of STI translocation across the inner membrane (H. Yamanaka, Y. Fuke, S. Hitotsubashi, Y. Fujii, and K. Okamoto, Microbiol. Immunol. 37:195-205, 1993). We therefore examined the amino acid residues in the sequence that are responsible for this function. We substituted several amino acid residues in the sequence by means of oligonucleotide-directed site-specific mutagenesis. We then evaluated the effect of the substitution on the efficiency of STI translocation across the inner membrane by determining the enterotoxic activity of the culture supernatant, the amount of a fusion protein consisting of STI and nuclease A released into the periplasm, and the amount of the labeled ST released into the periplasm after pulse-labeling with [35S]cysteine. Substitution of the charged amino acid residues at positions 29 to 31 (K-E-K) with hydrophobic (I-V-L, F-W-F, or F-W-Q) or basic (K-K-K) residues significantly reduced these values in every assay. In contrast, the substitution of these amino acid residues with acidic amino acid residues (E-E-E) increased these values in all assays. This means that the negative charge near position 30 is important for STI to translocate efficiently across the inner membrane. A similar substitution of lysine residues at positions 37 and 38 showed that they are not involved in the translocation of STI across the inner membrane.

Full Text

The Full Text of this article is available as a PDF (748.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acheson D. W. Enterotoxins in acute infective diarrhoea. J Infect. 1992 May;24(3):225–245. doi: 10.1016/s0163-4453(05)80028-3. [DOI] [PubMed] [Google Scholar]
  2. Aimoto S., Takao T., Shimonishi Y., Hara S., Takeda T., Takeda Y., Miwatani T. Amino-acid sequence of a heat-stable enterotoxin produced by human enterotoxigenic Escherichia coli. Eur J Biochem. 1982 Dec 15;129(2):257–263. doi: 10.1111/j.1432-1033.1982.tb07047.x. [DOI] [PubMed] [Google Scholar]
  3. Andersson H., Bakker E., von Heijne G. Different positively charged amino acids have similar effects on the topology of a polytopic transmembrane protein in Escherichia coli. J Biol Chem. 1992 Jan 25;267(3):1491–1495. [PubMed] [Google Scholar]
  4. Andersson H., von Heijne G. A 30-residue-long "export initiation domain" adjacent to the signal sequence is critical for protein translocation across the inner membrane of Escherichia coli. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9751–9754. doi: 10.1073/pnas.88.21.9751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Andersson H., von Heijne G. Membrane protein topology: effects of delta mu H+ on the translocation of charged residues explain the 'positive inside' rule. EMBO J. 1994 May 15;13(10):2267–2272. doi: 10.1002/j.1460-2075.1994.tb06508.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bassford P., Beckwith J., Ito K., Kumamoto C., Mizushima S., Oliver D., Randall L., Silhavy T., Tai P. C., Wickner B. The primary pathway of protein export in E. coli. Cell. 1991 May 3;65(3):367–368. doi: 10.1016/0092-8674(91)90453-6. [DOI] [PubMed] [Google Scholar]
  7. Betley M. J., Miller V. L., Mekalanos J. J. Genetics of bacterial enterotoxins. Annu Rev Microbiol. 1986;40:577–605. doi: 10.1146/annurev.mi.40.100186.003045. [DOI] [PubMed] [Google Scholar]
  8. Blobel G. Intracellular protein topogenesis. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1496–1500. doi: 10.1073/pnas.77.3.1496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cao G., Kuhn A., Dalbey R. E. The translocation of negatively charged residues across the membrane is driven by the electrochemical potential: evidence for an electrophoresis-like membrane transfer mechanism. EMBO J. 1995 Mar 1;14(5):866–875. doi: 10.1002/j.1460-2075.1995.tb07068.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Filip C., Fletcher G., Wulff J. L., Earhart C. F. Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol. 1973 Sep;115(3):717–722. doi: 10.1128/jb.115.3.717-722.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Geller B., Zhu H. Y., Cheng S., Kuhn A., Dalbey R. E. Charged residues render pro-OmpA potential dependent for initiation of membrane translocation. J Biol Chem. 1993 May 5;268(13):9442–9447. [PubMed] [Google Scholar]
  12. Guzman-Verduzco L. M., Kupersztoch Y. M. Rectification of two Escherichia coli heat-stable enterotoxin allele sequences and lack of biological effect of changing the carboxy-terminal tyrosine to histidine. Infect Immun. 1989 Feb;57(2):645–648. doi: 10.1128/iai.57.2.645-648.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johansson M., Nilsson I., von Heijne G. Positively charged amino acids placed next to a signal sequence block protein translocation more efficiently in Escherichia coli than in mammalian microsomes. Mol Gen Genet. 1993 May;239(1-2):251–256. doi: 10.1007/BF00281625. [DOI] [PubMed] [Google Scholar]
  14. Kato M., Tokuda H., Mizushima S. In vitro translocation of secretory proteins possessing no charges at the mature domain takes place efficiently in a protonmotive force-dependent manner. J Biol Chem. 1992 Jan 5;267(1):413–418. [PubMed] [Google Scholar]
  15. Kohara A., Yamamoto Y., Kikuchi M. Alteration of N-terminal residues of mature human lysozyme affects its secretion in yeast and translocation into canine microsomal vesicles. J Biol Chem. 1991 Oct 25;266(30):20363–20368. [PubMed] [Google Scholar]
  16. Kuhn A., Zhu H. Y., Dalbey R. E. Efficient translocation of positively charged residues of M13 procoat protein across the membrane excludes electrophoresis as the primary force for membrane insertion. EMBO J. 1990 Aug;9(8):2385–2389. doi: 10.1002/j.1460-2075.1990.tb07413.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kuroiwa T., Sakaguchi M., Mihara K., Omura T. Structural requirements for interruption of protein translocation across rough endoplasmic reticulum membrane. J Biochem. 1990 Nov;108(5):829–834. doi: 10.1093/oxfordjournals.jbchem.a123288. [DOI] [PubMed] [Google Scholar]
  18. Kuroiwa T., Sakaguchi M., Mihara K., Omura T. Systematic analysis of stop-transfer sequence for microsomal membrane. J Biol Chem. 1991 May 15;266(14):9251–9255. [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. MacIntyre S., Henning U. The role of the mature part of secretory proteins in translocation across the plasma membrane and in regulation of their synthesis in Escherichia coli. Biochimie. 1990 Feb-Mar;72(2-3):157–167. doi: 10.1016/0300-9084(90)90141-3. [DOI] [PubMed] [Google Scholar]
  22. Okamoto K., Okamoto K., Yukitake J., Miyama A. Reduction of enterotoxic activity of Escherichia coli heat-stable enterotoxin by substitution for an asparagine residue. Infect Immun. 1988 Aug;56(8):2144–2148. doi: 10.1128/iai.56.8.2144-2148.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Okamoto K., Takahara M. Synthesis of Escherichia coli heat-stable enterotoxin STp as a pre-pro form and role of the pro sequence in secretion. J Bacteriol. 1990 Sep;172(9):5260–5265. doi: 10.1128/jb.172.9.5260-5265.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rasheed J. K., Guzmán-Verduzco L. M., Kupersztoch Y. M. Two precursors of the heat-stable enterotoxin of Escherichia coli: evidence of extracellular processing. Mol Microbiol. 1990 Feb;4(2):265–273. doi: 10.1111/j.1365-2958.1990.tb00593.x. [DOI] [PubMed] [Google Scholar]
  25. Rasmussen B. A., Silhavy T. J. The first 28 amino acids of mature LamB are required for rapid and efficient export from the cytoplasm. Genes Dev. 1987 Apr;1(2):185–196. doi: 10.1101/gad.1.2.185. [DOI] [PubMed] [Google Scholar]
  26. Sakaguchi M., Tomiyoshi R., Kuroiwa T., Mihara K., Omura T. Functions of signal and signal-anchor sequences are determined by the balance between the hydrophobic segment and the N-terminal charge. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):16–19. doi: 10.1073/pnas.89.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schatz P. J., Beckwith J. Genetic analysis of protein export in Escherichia coli. Annu Rev Genet. 1990;24:215–248. doi: 10.1146/annurev.ge.24.120190.001243. [DOI] [PubMed] [Google Scholar]
  29. So M., McCarthy B. J. Nucleotide sequence of the bacterial transposon Tn1681 encoding a heat-stable (ST) toxin and its identification in enterotoxigenic Escherichia coli strains. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4011–4015. doi: 10.1073/pnas.77.7.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  31. Summers R. G., Knowles J. R. Illicit secretion of a cytoplasmic protein into the periplasm of Escherichia coli requires a signal peptide plus a portion of the cognate secreted protein. Demarcation of the critical region of the mature protein. J Biol Chem. 1989 Nov 25;264(33):20074–20081. [PubMed] [Google Scholar]
  32. Takahara M., Hibler D. W., Barr P. J., Gerlt J. A., Inouye M. The ompA signal peptide directed secretion of Staphylococcal nuclease A by Escherichia coli. J Biol Chem. 1985 Mar 10;260(5):2670–2674. [PubMed] [Google Scholar]
  33. Takao T., Hitouji T., Aimoto S., Shimonishi Y., Hara S., Takeda T., Takeda Y., Miwatani T. Amino acid sequence of a heat-stable enterotoxin isolated from enterotoxigenic Escherichia coli strain 18D. FEBS Lett. 1983 Feb 7;152(1):1–5. doi: 10.1016/0014-5793(83)80469-4. [DOI] [PubMed] [Google Scholar]
  34. Wickner W., Driessen A. J., Hartl F. U. The enzymology of protein translocation across the Escherichia coli plasma membrane. Annu Rev Biochem. 1991;60:101–124. doi: 10.1146/annurev.bi.60.070191.000533. [DOI] [PubMed] [Google Scholar]
  35. Yamanaka H., Fuke Y., Hitotsubashi S., Fujii Y., Okamoto K. Functional properties of pro region of Escherichia coli heat-stable enterotoxin. Microbiol Immunol. 1993;37(3):195–205. doi: 10.1111/j.1348-0421.1993.tb03200.x. [DOI] [PubMed] [Google Scholar]
  36. Yamanaka H., Kameyama M., Baba T., Fujii Y., Okamoto K. Maturation pathway of Escherichia coli heat-stable enterotoxin I: requirement of DsbA for disulfide bond formation. J Bacteriol. 1994 May;176(10):2906–2913. doi: 10.1128/jb.176.10.2906-2913.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yamane K., Akiyama Y., Ito K., Mizushima S. A positively charged region is a determinant of the orientation of cytoplasmic membrane proteins in Escherichia coli. J Biol Chem. 1990 Dec 5;265(34):21166–21171. [PubMed] [Google Scholar]
  38. von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol. 1992 May 20;225(2):487–494. doi: 10.1016/0022-2836(92)90934-c. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES