Abstract
We have characterized the natural immune responses to the 19-kDa domain of merozoite surface protein 1 in individuals from an area of western Kenya in which malaria is holoendemic. We used the three known natural variant forms of the yeast-expressed recombinant 19-kDa fragment that are referred to as the E-KNG, Q-KNG, and E-TSR antigens. T-cell proliferative responses in individuals older than 15 years and the profile of immunoglobulin G (IgG) antibody isotypes in individuals from 2 to 74 years old were determined. Positive proliferative responses to the Q-KNG antigen were observed for 54% of the individuals, and 37 and 35% of the individuals responded to the E-KNG and E-TSR constructs, respectively. Considerable heterogeneity in the T-cell proliferative responses to these three variant antigens was observed in different individuals, suggesting that the 19-kDa antigen may contain variant-specific T epitopes. Among responses of the different isotypes of the IgG antibody, IgG1 and IgG3 isotype responses were predominant, and the prevalence and levels of the responses increased with age. We also found that a higher level of IgG1 antibody response correlated with lower parasite density among young age groups, suggesting that IgG1 antibody response may play a role in protection against malaria. However, there was no correlation between the IgG3 antibody level and protection. Furthermore, we observed that although the natural antibodies cross-reacted with all three variant 19-kDa antigens, IgG3 antibodies in 12 plasma samples recognized only the E-KNG and Q-KNG constructs and not the E-TSR antigen. This result suggests that the fine specificity of IgG3 antibodies differentiates among variant-specific natural B-cell determinants in the second epidermal growth factor domain (KNG and TSR) of the antigen.
Full Text
The Full Text of this article is available as a PDF (373.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beier J. C., Perkins P. V., Onyango F. K., Gargan T. P., Oster C. N., Whitmire R. E., Koech D. K., Roberts C. R. Characterization of malaria transmission by Anopheles (Diptera: Culicidae) in western Kenya in preparation for malaria vaccine trials. J Med Entomol. 1990 Jul;27(4):570–577. doi: 10.1093/jmedent/27.4.570. [DOI] [PubMed] [Google Scholar]
- Blackman M. J., Heidrich H. G., Donachie S., McBride J. S., Holder A. A. A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J Exp Med. 1990 Jul 1;172(1):379–382. doi: 10.1084/jem.172.1.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blackman M. J., Ling I. T., Nicholls S. C., Holder A. A. Proteolytic processing of the Plasmodium falciparum merozoite surface protein-1 produces a membrane-bound fragment containing two epidermal growth factor-like domains. Mol Biochem Parasitol. 1991 Nov;49(1):29–33. doi: 10.1016/0166-6851(91)90127-r. [DOI] [PubMed] [Google Scholar]
- Bouharoun-Tayoun H., Attanath P., Sabchareon A., Chongsuphajaisiddhi T., Druilhe P. Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J Exp Med. 1990 Dec 1;172(6):1633–1641. doi: 10.1084/jem.172.6.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang S. P., Gibson H. L., Lee-Ng C. T., Barr P. J., Hui G. S. A carboxyl-terminal fragment of Plasmodium falciparum gp195 expressed by a recombinant baculovirus induces antibodies that completely inhibit parasite growth. J Immunol. 1992 Jul 15;149(2):548–555. [PubMed] [Google Scholar]
- Chappel J. A., Holder A. A. Monoclonal antibodies that inhibit Plasmodium falciparum invasion in vitro recognise the first growth factor-like domain of merozoite surface protein-1. Mol Biochem Parasitol. 1993 Aug;60(2):303–311. doi: 10.1016/0166-6851(93)90141-j. [DOI] [PubMed] [Google Scholar]
- Cooper J. A., Cooper L. T., Saul A. J. Mapping of the region predominantly recognized by antibodies to the Plasmodium falciparum merozoite surface antigen MSA 1. Mol Biochem Parasitol. 1992 Apr;51(2):301–312. doi: 10.1016/0166-6851(92)90080-4. [DOI] [PubMed] [Google Scholar]
- Daly T. M., Long C. A. A recombinant 15-kilodalton carboxyl-terminal fragment of Plasmodium yoelii yoelii 17XL merozoite surface protein 1 induces a protective immune response in mice. Infect Immun. 1993 Jun;61(6):2462–2467. doi: 10.1128/iai.61.6.2462-2467.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egan A. F., Chappel J. A., Burghaus P. A., Morris J. S., McBride J. S., Holder A. A., Kaslow D. C., Riley E. M. Serum antibodies from malaria-exposed people recognize conserved epitopes formed by the two epidermal growth factor motifs of MSP1(19), the carboxy-terminal fragment of the major merozoite surface protein of Plasmodium falciparum. Infect Immun. 1995 Feb;63(2):456–466. doi: 10.1128/iai.63.2.456-466.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenwood B., Marsh K., Snow R. Why do some African children develop severe malaria? Parasitol Today. 1991 Oct;7(10):277–281. doi: 10.1016/0169-4758(91)90096-7. [DOI] [PubMed] [Google Scholar]
- Groux H., Gysin J. Opsonization as an effector mechanism in human protection against asexual blood stages of Plasmodium falciparum: functional role of IgG subclasses. Res Immunol. 1990 Jul-Aug;141(6):529–542. doi: 10.1016/0923-2494(90)90021-p. [DOI] [PubMed] [Google Scholar]
- Holder A. A., Riley E. M. Human immune response to MSP-1. Parasitol Today. 1996 May;12(5):173–206. doi: 10.1016/0169-4758(96)20009-2. [DOI] [PubMed] [Google Scholar]
- Holder A. A. The precursor to major merozoite surface antigens: structure and role in immunity. Prog Allergy. 1988;41:72–97. [PubMed] [Google Scholar]
- Hui G. S., Gosnell W. L., Case S. E., Hashiro C., Nikaido C., Hashimoto A., Kaslow D. C. Immunogenicity of the C-terminal 19-kDa fragment of the Plasmodium falciparum merozoite surface protein 1 (MSP1), YMSP1(19) expressed in S. cerevisiae. J Immunol. 1994 Sep 15;153(6):2544–2553. [PubMed] [Google Scholar]
- Jongwutiwes S., Tanabe K., Kanbara H. Sequence conservation in the C-terminal part of the precursor to the major merozoite surface proteins (MSP1) of Plasmodium falciparum from field isolates. Mol Biochem Parasitol. 1993 May;59(1):95–100. doi: 10.1016/0166-6851(93)90010-u. [DOI] [PubMed] [Google Scholar]
- Kang Y., Long C. A. Sequence heterogeneity of the C-terminal, Cys-rich region of the merozoite surface protein-1 (MSP-1) in field samples of Plasmodium falciparum. Mol Biochem Parasitol. 1995 Jul;73(1-2):103–110. doi: 10.1016/0166-6851(95)00102-7. [DOI] [PubMed] [Google Scholar]
- Kaslow D. C., Hui G., Kumar S. Expression and antigenicity of Plasmodium falciparum major merozoite surface protein (MSP1(19)) variants secreted from Saccharomyces cerevisiae. Mol Biochem Parasitol. 1994 Feb;63(2):283–289. doi: 10.1016/0166-6851(94)90064-7. [DOI] [PubMed] [Google Scholar]
- Kumar S., Yadava A., Keister D. B., Tian J. H., Ohl M., Perdue-Greenfield K. A., Miller L. H., Kaslow D. C. Immunogenicity and in vivo efficacy of recombinant Plasmodium falciparum merozoite surface protein-1 in Aotus monkeys. Mol Med. 1995 Mar;1(3):325–332. [PMC free article] [PubMed] [Google Scholar]
- Miller L. H., Roberts T., Shahabuddin M., McCutchan T. F. Analysis of sequence diversity in the Plasmodium falciparum merozoite surface protein-1 (MSP-1). Mol Biochem Parasitol. 1993 May;59(1):1–14. doi: 10.1016/0166-6851(93)90002-f. [DOI] [PubMed] [Google Scholar]
- Riley E. M., Allen S. J., Wheeler J. G., Blackman M. J., Bennett S., Takacs B., Schönfeld H. J., Holder A. A., Greenwood B. M. Naturally acquired cellular and humoral immune responses to the major merozoite surface antigen (PfMSP1) of Plasmodium falciparum are associated with reduced malaria morbidity. Parasite Immunol. 1992 May;14(3):321–337. doi: 10.1111/j.1365-3024.1992.tb00471.x. [DOI] [PubMed] [Google Scholar]
- Riley E. M., Morris-Jones S., Blackman M. J., Greenwood B. M., Holder A. A. A longitudinal study of naturally acquired cellular and humoral immune responses to a merozoite surface protein (MSP1) of Plasmodium falciparum in an area of seasonal malaria transmission. Parasite Immunol. 1993 Sep;15(9):513–524. doi: 10.1111/j.1365-3024.1993.tb00639.x. [DOI] [PubMed] [Google Scholar]
- Shai S., Blackman M. J., Holder A. A. Epitopes in the 19kDa fragment of the Plasmodium falciparum major merozoite surface protein-1 (PfMSP-1(19)) recognized by human antibodies. Parasite Immunol. 1995 May;17(5):269–275. doi: 10.1111/j.1365-3024.1995.tb01025.x. [DOI] [PubMed] [Google Scholar]
- Tanabe K., Mackay M., Goman M., Scaife J. G. Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. J Mol Biol. 1987 May 20;195(2):273–287. doi: 10.1016/0022-2836(87)90649-8. [DOI] [PubMed] [Google Scholar]
- Udhayakumar V., Anyona D., Kariuki S., Shi Y. P., Bloland P. B., Branch O. H., Weiss W., Nahlen B. L., Kaslow D. C., Lal A. A. Identification of T and B cell epitopes recognized by humans in the C-terminal 42-kDa domain of the Plasmodium falciparum merozoite surface protein (MSP)-1. J Immunol. 1995 Jun 1;154(11):6022–6030. [PubMed] [Google Scholar]
- Wilson C. F., Anand R., Clark J. T., McBride J. S. Topography of epitopes on a polymorphic schizont antigen of Plasmodium falciparum determined by the binding of monoclonal antibodies in a two-site radioimmunoassay. Parasite Immunol. 1987 Nov;9(6):737–746. doi: 10.1111/j.1365-3024.1987.tb00541.x. [DOI] [PubMed] [Google Scholar]