Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Jul;64(7):2745–2751. doi: 10.1128/iai.64.7.2745-2751.1996

Specificity of human bactericidal antibodies against PorA P1.7,16 induced with a hexavalent meningococcal outer membrane vesicle vaccine.

E R van der Voort 1, P van der Ley 1, J van der Biezen 1, S George 1, O Tunnela 1, H van Dijken 1, B Kuipers 1, J Poolman 1
PMCID: PMC174135  PMID: 8698504

Abstract

A set of isogenic strains was constructed from the meningococcal reference strain H44/76 (B:15:P1.7,16) which differed only in their outer membrane protein (OMP) compositions. First, three isogenic strains lacking the expression of either class 3 (PorB) or class 4 (RmpM) OMP or both were obtained. Second, three isogenic class 1 OMP loop-deficient strains of H44/76 lacking the predicted loop 1 or 4 or both of class 1 OMP (PorA) were obtained. Third, three isogenic class 1 OMP strains which differed by point mutations in the predicted loop 4 of subtype P1.16 were constructed. Strains were constructed through transformation with gene constructs made in Escherichia coli and their homologous recombination into the meningococcal chromosome. This study describes the contribution of one of the six class 1 OMPs, PorA P1.7,16, in the development of bactericidal antibodies after a single immunization of adult volunteers with 50 or 100 micrograms of protein within a hexavalent PorA outer membrane vesicle vaccine. PorA-, PorB-, and RpmM-deficient isogenic strains were used to define the human immune response against PorA. The loop-deficient isogenic strains were used to define the contribution of loops 1 and 4 of PorA in the development of bactericidal anti-PorA antibodies. The isogenic strains carrying a point mutation in loop 4 were used to study the cross-reactivity of the induced bactericidal antibodies against target strains showing microheterogeneity. The results indicate that a single immunization with the hexavalent PorA vaccine induced a dose-dependent bactericidal immune response, which is directed mainly against PorA. The epitope specificity of antibodies is directed mostly against loop 1, although loop 4 and as-yet-unidentified epitopes of PorA P1.7,16 are also involved.

Full Text

The Full Text of this article is available as a PDF (396.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdillahi H., Poolman J. T. Neisseria meningitidis group B serosubtyping using monoclonal antibodies in whole-cell ELISA. Microb Pathog. 1988 Jan;4(1):27–32. doi: 10.1016/0882-4010(88)90045-9. [DOI] [PubMed] [Google Scholar]
  2. Bartoloni A., Norelli F., Ceccarini C., Rappuoli R., Costantino P. Immunogenicity of meningococcal B polysaccharide conjugated to tetanus toxoid or CRM197 via adipic acid dihydrazide. Vaccine. 1995 Apr;13(5):463–470. doi: 10.1016/0264-410x(94)00007-a. [DOI] [PubMed] [Google Scholar]
  3. Bjune G., Høiby E. A., Grønnesby J. K., Arnesen O., Fredriksen J. H., Halstensen A., Holten E., Lindbak A. K., Nøkleby H., Rosenqvist E. Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lancet. 1991 Nov 2;338(8775):1093–1096. doi: 10.1016/0140-6736(91)91961-s. [DOI] [PubMed] [Google Scholar]
  4. Butcher S., Sarvas M., Runeberg-Nyman K. Class-3 porin protein of Neisseria meningitidis: cloning and structure of the gene. Gene. 1991 Aug 30;105(1):125–128. doi: 10.1016/0378-1119(91)90523-e. [DOI] [PubMed] [Google Scholar]
  5. Davies R. L., Wall R. A., Borriello S. P. Comparison of methods for the analysis of outer membrane antigens of Neisseria meningitidis by western blotting. J Immunol Methods. 1990 Dec 5;134(2):215–225. doi: 10.1016/0022-1759(90)90383-7. [DOI] [PubMed] [Google Scholar]
  6. Finne J., Bitter-Suermann D., Goridis C., Finne U. An IgG monoclonal antibody to group B meningococci cross-reacts with developmentally regulated polysialic acid units of glycoproteins in neural and extraneural tissues. J Immunol. 1987 Jun 15;138(12):4402–4407. [PubMed] [Google Scholar]
  7. Frasch C. E. Status of a group B Neisseria meningitidis vaccine. Eur J Clin Microbiol. 1985 Dec;4(6):533–536. doi: 10.1007/BF02013388. [DOI] [PubMed] [Google Scholar]
  8. Frasch C. E. Vaccines for prevention of meningococcal disease. Clin Microbiol Rev. 1989 Apr;2 (Suppl):S134–S138. doi: 10.1128/cmr.2.suppl.s134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldschneider I., Gotschlich E. C., Artenstein M. S. Human immunity to the meningococcus. I. The role of humoral antibodies. J Exp Med. 1969 Jun 1;129(6):1307–1326. doi: 10.1084/jem.129.6.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goodman S. D., Scocca J. J. Factors influencing the specific interaction of Neisseria gonorrhoeae with transforming DNA. J Bacteriol. 1991 Sep;173(18):5921–5923. doi: 10.1128/jb.173.18.5921-5923.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holten E. Serotypes of Neisseria meningitidis isolated from patients in Norway during the first six months of 1978. J Clin Microbiol. 1979 Feb;9(2):186–188. doi: 10.1128/jcm.9.2.186-188.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Høiby E. A., Rosenqvist E., Frøholm L. O., Bjune G., Feiring B., Nøkleby H., Rønnild E. Bactericidal antibodies after vaccination with the Norwegian meningococcal serogroup B outer membrane vesicle vaccine: a brief survey. NIPH Ann. 1991 Dec;14(2):147–156. [PubMed] [Google Scholar]
  13. McGuinness B. T., Clarke I. N., Lambden P. R., Barlow A. K., Poolman J. T., Jones D. M., Heckels J. E. Point mutation in meningococcal por A gene associated with increased endemic disease. Lancet. 1991 Mar 2;337(8740):514–517. doi: 10.1016/0140-6736(91)91297-8. [DOI] [PubMed] [Google Scholar]
  14. McGuinness B., Barlow A. K., Clarke I. N., Farley J. E., Anilionis A., Poolman J. T., Heckels J. E. Deduced amino acid sequences of class 1 protein (PorA) from three strains of Neisseria meningitidis. Synthetic peptides define the epitopes responsible for serosubtype specificity. J Exp Med. 1990 Jun 1;171(6):1871–1882. doi: 10.1084/jem.171.6.1871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mead D. A., Kemper B. Chimeric single-stranded DNA phage-plasmid cloning vectors. Biotechnology. 1988;10:85–102. doi: 10.1016/b978-0-409-90042-2.50010-6. [DOI] [PubMed] [Google Scholar]
  16. Monod M., Denoya C., Dubnau D. Sequence and properties of pIM13, a macrolide-lincosamide-streptogramin B resistance plasmid from Bacillus subtilis. J Bacteriol. 1986 Jul;167(1):138–147. doi: 10.1128/jb.167.1.138-147.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Munkley A., Tinsley C. R., Virji M., Heckels J. E. Blocking of bactericidal killing of Neisseria meningitidis by antibodies directed against class 4 outer membrane protein. Microb Pathog. 1991 Dec;11(6):447–452. doi: 10.1016/0882-4010(91)90041-8. [DOI] [PubMed] [Google Scholar]
  18. Peltola H. Meningococcal disease: still with us. Rev Infect Dis. 1983 Jan-Feb;5(1):71–91. doi: 10.1093/clinids/5.1.71. [DOI] [PubMed] [Google Scholar]
  19. Rosenqvist E., Høiby E. A., Wedege E., Bryn K., Kolberg J., Klem A., Rønnild E., Bjune G., Nøkleby H. Human antibody responses to meningococcal outer membrane antigens after three doses of the Norwegian group B meningococcal vaccine. Infect Immun. 1995 Dec;63(12):4642–4652. doi: 10.1128/iai.63.12.4642-4652.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rosenqvist E., Høiby E. A., Wedege E., Caugant D. A., Frøholm L. O., McGuinness B. T., Brooks J., Lambden P. R., Heckels J. E. A new variant of serosubtype P1.16 in Neisseria meningitidis from Norway, associated with increased resistance to bactericidal antibodies induced by a serogroup B outer membrane protein vaccine. Microb Pathog. 1993 Sep;15(3):197–205. doi: 10.1006/mpat.1993.1070. [DOI] [PubMed] [Google Scholar]
  21. Saukkonen K., Abdillahi H., Poolman J. T., Leinonen M. Protective efficacy of monoclonal antibodies to class 1 and class 3 outer membrane proteins of Neisseria meningitidis B:15:P1.16 in infant rat infection model: new prospects for vaccine development. Microb Pathog. 1987 Oct;3(4):261–267. doi: 10.1016/0882-4010(87)90059-3. [DOI] [PubMed] [Google Scholar]
  22. Saukkonen K., Leinonen M., Abdillahi H., Poolman J. T. Comparative evaluation of potential components for group B meningococcal vaccine by passive protection in the infant rat and in vitro bactericidal assay. Vaccine. 1989 Aug;7(4):325–328. doi: 10.1016/0264-410x(89)90194-1. [DOI] [PubMed] [Google Scholar]
  23. Scholten R. J., Bijlmer H. A., Poolman J. T., Kuipers B., Caugant D. A., Van Alphen L., Dankert J., Valkenburg H. A. Meningococcal disease in The Netherlands, 1958-1990: a steady increase in the incidence since 1982 partially caused by new serotypes and subtypes of Neisseria meningitidis. Clin Infect Dis. 1993 Feb;16(2):237–246. doi: 10.1093/clind/16.2.237. [DOI] [PubMed] [Google Scholar]
  24. Scholten R. J., Kuipers B., Valkenburg H. A., Dankert J., Zollinger W. D., Poolman J. T. Lipo-oligosaccharide immunotyping of Neisseria meningitidis by a whole-cell ELISA with monoclonal antibodies. J Med Microbiol. 1994 Oct;41(4):236–243. doi: 10.1099/00222615-41-4-236. [DOI] [PubMed] [Google Scholar]
  25. Suker J., Feavers I. M., Achtman M., Morelli G., Wang J. F., Maiden M. C. The porA gene in serogroup A meningococci: evolutionary stability and mechanism of genetic variation. Mol Microbiol. 1994 Apr;12(2):253–265. doi: 10.1111/j.1365-2958.1994.tb01014.x. [DOI] [PubMed] [Google Scholar]
  26. Tommassen J., Vermeij P., Struyvé M., Benz R., Poolman J. T. Isolation of Neisseria meningitidis mutants deficient in class 1 (porA) and class 3 (porB) outer membrane proteins. Infect Immun. 1990 May;58(5):1355–1359. doi: 10.1128/iai.58.5.1355-1359.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Van Der Ley P., Poolman J. T. Construction of a multivalent meningococcal vaccine strain based on the class 1 outer membrane protein. Infect Immun. 1992 Aug;60(8):3156–3161. doi: 10.1128/iai.60.8.3156-3161.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wedege E., Dalseg R., Caugant D. A., Poolman J. T., Frøholm L. O. Expression of an inaccessible P1.7 subtype epitope on meningococcal class 1 proteins. J Med Microbiol. 1993 Jan;38(1):23–28. doi: 10.1099/00222615-38-1-23. [DOI] [PubMed] [Google Scholar]
  29. de Moraes J. C., Perkins B. A., Camargo M. C., Hidalgo N. T., Barbosa H. A., Sacchi C. T., Landgraf I. M., Gattas V. L., Vasconcelos H. de G., Gral I. M. Protective efficacy of a serogroup B meningococcal vaccine in Sao Paulo, Brazil. Lancet. 1992 Oct 31;340(8827):1074–1078. doi: 10.1016/0140-6736(92)93086-3. [DOI] [PubMed] [Google Scholar]
  30. van der Ley P., Heckels J. E., Virji M., Hoogerhout P., Poolman J. T. Topology of outer membrane porins in pathogenic Neisseria spp. Infect Immun. 1991 Sep;59(9):2963–2971. doi: 10.1128/iai.59.9.2963-2971.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. van der Ley P., van der Biezen J., Hohenstein P., Peeters C., Poolman J. T. Use of transformation to construct antigenic hybrids of the class 1 outer membrane protein in Neisseria meningitidis. Infect Immun. 1993 Oct;61(10):4217–4224. doi: 10.1128/iai.61.10.4217-4224.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van der Ley P., van der Biezen J., Poolman J. T. Construction of Neisseria meningitidis strains carrying multiple chromosomal copies of the porA gene for use in the production of a multivalent outer membrane vesicle vaccine. Vaccine. 1995 Mar;13(4):401–407. doi: 10.1016/0264-410x(95)98264-b. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES