Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Jul;64(7):2812–2816. doi: 10.1128/iai.64.7.2812-2816.1996

Role of calcium during lipopolysaccharide stimulation of neutrophils.

D A Rodeberg 1, G F Babcock 1
PMCID: PMC174145  PMID: 8698514

Abstract

This study investigated the role of intracellular calcium concentration ([Ca]i) as a possible intermediate in the lipopolysaccharide (LPS) second messenger pathway for the activation of neutrophils (polymorphonuclear leukocytes [PMNs]). Isolated PMNs were loaded with the calcium-sensitive fluorescent dye fura-2. The PMNs were stimulated with either LPS or the positive control formyl-Met-Leu-Phe (fMLP). As expected, PMN exposure to fMLP increased [Ca]i. However, LPS stimulation did not induce any detectable changes. Depletion of intracellular Ca stores with thapsigargin, or extracellular Ca with EGTA, significantly inhibited the upregulation of the CD11b/CD18 integrin in response to fMLP but not LPS. We conclude that [Ca]i is not an early intermediate in the second-messenger pathway for the activation of PMNs by LPS.

Full Text

The Full Text of this article is available as a PDF (250.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babcock G. F., Taylor A. F., Hynd B. A., Sramkoski R. M., Alexander J. W. Flow cytometric analysis of lymphocyte subset phenotypes comparing normal children and adults. Diagn Clin Immunol. 1987;5(4):175–179. [PubMed] [Google Scholar]
  2. Bakouche O., Moreau J. L., Lachman L. B. Secretion of IL-1: role of protein kinase C. J Immunol. 1992 Jan 1;148(1):84–91. [PubMed] [Google Scholar]
  3. Buchmüller-Rouiller Y., Mauël J. Macrophage activation for intracellular killing as induced by calcium ionophore. Correlation with biologic and biochemical events. J Immunol. 1991 Jan 1;146(1):217–223. [PubMed] [Google Scholar]
  4. Conrad G. W., Rink T. J. Platelet activating factor raises intracellular calcium ion concentration in macrophages. J Cell Biol. 1986 Aug;103(2):439–450. doi: 10.1083/jcb.103.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dahinden C., Galanos C., Fehr J. Granulocyte activation by endotoxin. I. Correlation between adherence and other granulocyte functions, and role of endotoxin structure on biologic activity. J Immunol. 1983 Feb;130(2):857–862. [PubMed] [Google Scholar]
  6. Demaurex N., Monod A., Lew D. P., Krause K. H. Characterization of receptor-mediated and store-regulated Ca2+ influx in human neutrophils. Biochem J. 1994 Feb 1;297(Pt 3):595–601. doi: 10.1042/bj2970595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dong Z., Qi X., Fidler I. J. Tyrosine phosphorylation of mitogen-activated protein kinases is necessary for activation of murine macrophages by natural and synthetic bacterial products. J Exp Med. 1993 Apr 1;177(4):1071–1077. doi: 10.1084/jem.177.4.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drysdale B. E., Yapundich R. A., Shin M. L., Shin H. S. Lipopolysaccharide-mediated macrophage activation: the role of calcium in the generation of tumoricidal activity. J Immunol. 1987 Feb 1;138(3):951–956. [PubMed] [Google Scholar]
  9. Finkel T. H., Pabst M. J., Suzuki H., Guthrie L. A., Forehand J. R., Phillips W. A., Johnston R. B., Jr Priming of neutrophils and macrophages for enhanced release of superoxide anion by the calcium ionophore ionomycin. Implications for regulation of the respiratory burst. J Biol Chem. 1987 Sep 15;262(26):12589–12596. [PubMed] [Google Scholar]
  10. Foder B., Scharff O., Thastrup O. Ca2+ transients and Mn2+ entry in human neutrophils induced by thapsigargin. Cell Calcium. 1989 Oct;10(7):477–490. doi: 10.1016/0143-4160(89)90025-0. [DOI] [PubMed] [Google Scholar]
  11. Forehand J. R., Pabst M. J., Phillips W. A., Johnston R. B., Jr Lipopolysaccharide priming of human neutrophils for an enhanced respiratory burst. Role of intracellular free calcium. J Clin Invest. 1989 Jan;83(1):74–83. doi: 10.1172/JCI113887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grundmann H. J., Hähnle U., Hegenscheid B., Sahlmüller G., Bienzle U., Blitstein-Willinger E. Inhibition of endotoxin-induced macrophage tumor necrosis factor expression by a prostacyclin analogue and its beneficial effect in experimental lipopolysaccharide intoxication. J Infect Dis. 1992 Mar;165(3):501–505. doi: 10.1093/infdis/165.3.501. [DOI] [PubMed] [Google Scholar]
  13. Klein J. B., Payne V., Schepers T. M., McLeish K. R. Bacterial lipopolysaccharide enhances polymorphonuclear leukocyte function independent of changes in intracellular calcium. Inflammation. 1990 Oct;14(5):599–611. doi: 10.1007/BF00914279. [DOI] [PubMed] [Google Scholar]
  14. Lanier L. L., Le A. M., Phillips J. H., Warner N. L., Babcock G. F. Subpopulations of human natural killer cells defined by expression of the Leu-7 (HNK-1) and Leu-11 (NK-15) antigens. J Immunol. 1983 Oct;131(4):1789–1796. [PubMed] [Google Scholar]
  15. Letari O., Nicosia S., Chiavaroli C., Vacher P., Schlegel W. Activation by bacterial lipopolysaccharide causes changes in the cytosolic free calcium concentration in single peritoneal macrophages. J Immunol. 1991 Aug 1;147(3):980–983. [PubMed] [Google Scholar]
  16. Lund-Johansen F., Olweus J., Aarli A., Bjerknes R. Signal transduction in human monocytes and granulocytes through the PI-linked antigen CD14. FEBS Lett. 1990 Oct 29;273(1-2):55–58. doi: 10.1016/0014-5793(90)81049-t. [DOI] [PubMed] [Google Scholar]
  17. Lynn W. A., Raetz C. R., Qureshi N., Golenbock D. T. Lipopolysaccharide-induced stimulation of CD11b/CD18 expression on neutrophils. Evidence of specific receptor-based response and inhibition by lipid A-based antagonists. J Immunol. 1991 Nov 1;147(9):3072–3079. [PubMed] [Google Scholar]
  18. MacIntyre E. A., Roberts P. J., Jones M., Van der Schoot C. E., Favalaro E. J., Tidman N., Linch D. C. Activation of human monocytes occurs on cross-linking monocytic antigens to an Fc receptor. J Immunol. 1989 Apr 1;142(7):2377–2383. [PubMed] [Google Scholar]
  19. Maudsley D. J., Morris A. G. Rapid intracellular calcium changes in U937 monocyte cell line: transient increases in response to platelet-activating factor and chemotactic peptide but not interferon-gamma or lipopolysaccharide. Immunology. 1987 Jun;61(2):189–194. [PMC free article] [PubMed] [Google Scholar]
  20. McLeish K. R., Dean W. L., Wellhausen S. R., Stelzer G. T. Role of intracellular calcium in priming of human peripheral blood monocytes by bacterial lipopolysaccharide. Inflammation. 1989 Dec;13(6):681–692. doi: 10.1007/BF00914312. [DOI] [PubMed] [Google Scholar]
  21. Merritt J. E., Jacob R., Hallam T. J. Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils. J Biol Chem. 1989 Jan 25;264(3):1522–1527. [PubMed] [Google Scholar]
  22. Merritt J. E., Moores K. E., Evans A. T., Sharma P., Evans F. J., MacPhee C. H. Involvement of calcium in modulation of neutrophil function by phorbol esters that activate protein kinase C isotypes and related enzymes. Biochem J. 1993 Feb 1;289(Pt 3):919–926. doi: 10.1042/bj2890919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Muroi M., Suzuki T. Role of protein kinase A in LPS-induced activation of NF-kappa B proteins of a mouse macrophage-like cell line, J774. Cell Signal. 1993 May;5(3):289–298. doi: 10.1016/0898-6568(93)90019-i. [DOI] [PubMed] [Google Scholar]
  24. Müller J. M., Ziegler-Heitbrock H. W., Baeuerle P. A. Nuclear factor kappa B, a mediator of lipopolysaccharide effects. Immunobiology. 1993 Apr;187(3-5):233–256. doi: 10.1016/S0171-2985(11)80342-6. [DOI] [PubMed] [Google Scholar]
  25. Nakano M., Saito S., Nakano Y., Yamasu H., Matsuura M., Shinomiya H. Intracellular protein phosphorylation in murine peritoneal macrophages in response to bacterial lipopolysaccharide (LPS): effects of kinase-inhibitors and LPS-induced tolerance. Immunobiology. 1993 Apr;187(3-5):272–282. doi: 10.1016/S0171-2985(11)80344-X. [DOI] [PubMed] [Google Scholar]
  26. Newton R. C. Lack of a central role for calcium in the induction and release of human interleukin-1. Biochem Biophys Res Commun. 1987 Sep 30;147(3):1027–1033. doi: 10.1016/s0006-291x(87)80173-0. [DOI] [PubMed] [Google Scholar]
  27. Prpic V., Weiel J. E., Somers S. D., DiGuiseppi J., Gonias S. L., Pizzo S. V., Hamilton T. A., Herman B., Adams D. O. Effects of bacterial lipopolysaccharide on the hydrolysis of phosphatidylinositol-4,5-bisphosphate in murine peritoneal macrophages. J Immunol. 1987 Jul 15;139(2):526–533. [PubMed] [Google Scholar]
  28. Raetz C. R. Biochemistry of endotoxins. Annu Rev Biochem. 1990;59:129–170. doi: 10.1146/annurev.bi.59.070190.001021. [DOI] [PubMed] [Google Scholar]
  29. Smolen J. E. Neutrophil signal transduction: calcium, kinases, and fusion. J Lab Clin Med. 1992 Oct;120(4):527–532. [PubMed] [Google Scholar]
  30. Stefanová I., Horejsí V., Ansotegui I. J., Knapp W., Stockinger H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science. 1991 Nov 15;254(5034):1016–1019. doi: 10.1126/science.1719635. [DOI] [PubMed] [Google Scholar]
  31. Van Dervort A. L., Doerfler M. E., Stuetz P., Danner R. L. Antagonism of lipopolysaccharide-induced priming of human neutrophils by lipid A analogs. J Immunol. 1992 Jul 1;149(1):359–366. [PubMed] [Google Scholar]
  32. Weingarten R., Sklar L. A., Mathison J. C., Omidi S., Ainsworth T., Simon S., Ulevitch R. J., Tobias P. S. Interactions of lipopolysaccharide with neutrophils in blood via CD14. J Leukoc Biol. 1993 May;53(5):518–524. doi: 10.1002/jlb.53.5.518. [DOI] [PubMed] [Google Scholar]
  33. Werner-Felmayer G., Prast H., Werner E. R., Philippu A., Wachter H. Induction of GTP cyclohydrolase I by bacterial lipopolysaccharide in the rat. FEBS Lett. 1993 May 17;322(3):223–226. doi: 10.1016/0014-5793(93)81574-j. [DOI] [PubMed] [Google Scholar]
  34. Wright S. D. Multiple receptors for endotoxin. Curr Opin Immunol. 1991 Feb;3(1):83–90. doi: 10.1016/0952-7915(91)90082-c. [DOI] [PubMed] [Google Scholar]
  35. Wright S. D., Ramos R. A., Hermanowski-Vosatka A., Rockwell P., Detmers P. A. Activation of the adhesive capacity of CR3 on neutrophils by endotoxin: dependence on lipopolysaccharide binding protein and CD14. J Exp Med. 1991 May 1;173(5):1281–1286. doi: 10.1084/jem.173.5.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yasui K., Becker E. L., Sha'afi R. I. Lipopolysaccharide and serum cause the translocation of G-protein to the membrane and prime neutrophils via CD14. Biochem Biophys Res Commun. 1992 Mar 31;183(3):1280–1286. doi: 10.1016/s0006-291x(05)80329-8. [DOI] [PubMed] [Google Scholar]
  37. Yasui K., Becker E. L., Sha'afi R. I. Lipopolysaccharide in combination with serum potentiates the stimulated activity of phospholipase D in human neutrophils via CD14. Membr Biochem. 1993 Apr-Jun;10(2):81–89. doi: 10.3109/09687689309150255. [DOI] [PubMed] [Google Scholar]
  38. Yee J., Christou N. V. Neutrophil priming by lipopolysaccharide involves heterogeneity in calcium-mediated signal transduction. Studies using fluo-3 and flow cytometry. J Immunol. 1993 Mar 1;150(5):1988–1997. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES