Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Aug;64(8):2923–2929. doi: 10.1128/iai.64.8.2923-2929.1996

The Bcg/Ity/Lsh locus: genetic transfer of resistance to infections in C57BL/6J mice transgenic for the Nramp1 Gly169 allele.

G Govoni 1, S Vidal 1, S Gauthier 1, E Skamene 1, D Malo 1, P Gros 1
PMCID: PMC174168  PMID: 8757814

Abstract

The murine Bcg/Ity/Lsh locus determines the susceptibilities of inbred strains to infection with unrelated intracellular parasites, such as Mycobacterium bovis, Salmonella typhimurium, and Leishmania donovani. A candidate for Bcg/Ity/Lsh, designated Nramp1, has been recently identified and shown to encode a novel integral membrane protein that is expressed exclusively in professional phagocytes but whose function remains unknown. In inbred strains, the susceptibility to infection is associated with a single glycine-to-aspartic acid substitution at position 169 (G169D) in the predicted TM4 of the protein. To confirm the candidacy of Nramp1 as Bcg/Ity/Lsh and to determine the importance of the G169D mutation on Nramp1 function, we constructed transgenic mice in which the G169 allele of Nramp1 was transferred onto the background of a homozygous D169 allele. These transgenic mice were analyzed for their sensitivity to infections under the control of Bcg/Ity/Lsh. The transgene constructed for these studies contained the entire Nramp1G169 gene together with approximately 5 kb of sequences upstream of the transcription initiation site of this gene. We observed that these sequences were sufficient to direct Nramp1G169 expression in transgenic macrophages, resulting in the appearance of a mature protein of 90 to 100 kDa over a background of Nramp1G169 characterized by the complete absence of the mature Nramp1 polypeptide. The appearance of the Nramp1G169-encoded protein in transgenic macrophages was concomitant with the emergence of resistance to infection by M. bovis BCG, as measured by the extent of bacteria] replication in the spleen, and by S. typhimurium, as measured by survival after an intravenous challenge. The gain of function detected in transgenic Nramp1G169 animals establishes unambiguously that Nramp1 and Bcg/Ity/Lsh are allelic.

Full Text

The Full Text of this article is available as a PDF (334.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):2241–2245. doi: 10.1093/nar/19.suppl.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barton C. H., White J. K., Roach T. I., Blackwell J. M. NH2-terminal sequence of macrophage-expressed natural resistance-associated macrophage protein (Nramp) encodes a proline/serine-rich putative Src homology 3-binding domain. J Exp Med. 1994 May 1;179(5):1683–1687. doi: 10.1084/jem.179.5.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benjamin W. H., Jr, Hall P., Roberts S. J., Briles D. E. The primary effect of the Ity locus is on the rate of growth of Salmonella typhimurium that are relatively protected from killing. J Immunol. 1990 Apr 15;144(8):3143–3151. [PubMed] [Google Scholar]
  4. Bradley D. J. Regulation of Leishmania populations within the host. II. genetic control of acute susceptibility of mice to Leishmania donovani infection. Clin Exp Immunol. 1977 Oct;30(1):130–140. [PMC free article] [PubMed] [Google Scholar]
  5. Cellier M., Privé G., Belouchi A., Kwan T., Rodrigues V., Chia W., Gros P. Nramp defines a family of membrane proteins. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10089–10093. doi: 10.1073/pnas.92.22.10089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cerretti D. P., Nelson N., Kozlosky C. J., Morrissey P. J., Copeland N. G., Gilbert D. J., Jenkins N. A., Dosik J. K., Mock B. A. The murine homologue of the human interleukin-8 receptor type B maps near the Ity-Lsh-Bcg disease resistance locus. Genomics. 1993 Nov;18(2):410–413. doi: 10.1006/geno.1993.1486. [DOI] [PubMed] [Google Scholar]
  7. Crocker P. R., Blackwell J. M., Bradley D. J. Expression of the natural resistance gene Lsh in resident liver macrophages. Infect Immun. 1984 Mar;43(3):1033–1040. doi: 10.1128/iai.43.3.1033-1040.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Denis M., Forget A., Pelletier M., Gervais F., Skamene E. Killing of Mycobacterium smegmatis by macrophages from genetically susceptible and resistant mice. J Leukoc Biol. 1990 Jan;47(1):25–30. doi: 10.1002/jlb.47.1.25. [DOI] [PubMed] [Google Scholar]
  9. Denning G. M., Anderson M. P., Amara J. F., Marshall J., Smith A. E., Welsh M. J. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature. 1992 Aug 27;358(6389):761–764. doi: 10.1038/358761a0. [DOI] [PubMed] [Google Scholar]
  10. Denning G. M., Ostedgaard L. S., Welsh M. J. Abnormal localization of cystic fibrosis transmembrane conductance regulator in primary cultures of cystic fibrosis airway epithelia. J Cell Biol. 1992 Aug;118(3):551–559. doi: 10.1083/jcb.118.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dunlap N. E., Benjamin W. H., Jr, Berry A. K., Eldridge J. H., Briles D. E. A 'safe-site' for Salmonella typhimurium is within splenic polymorphonuclear cells. Microb Pathog. 1992 Sep;13(3):181–190. doi: 10.1016/0882-4010(92)90019-k. [DOI] [PubMed] [Google Scholar]
  12. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  13. Goto Y., Buschman E., Skamene E. Regulation of host resistance to Mycobacterium intracellulare in vivo and in vitro by the Bcg gene. Immunogenetics. 1989;30(3):218–221. doi: 10.1007/BF02421210. [DOI] [PubMed] [Google Scholar]
  14. Govoni G., Vidal S., Cellier M., Lepage P., Malo D., Gros P. Genomic structure, promoter sequence, and induction of expression of the mouse Nramp1 gene in macrophages. Genomics. 1995 May 1;27(1):9–19. doi: 10.1006/geno.1995.1002. [DOI] [PubMed] [Google Scholar]
  15. Gros P., Skamene E., Forget A. Cellular mechanisms of genetically controlled host resistance to Mycobacterium bovis (BCG). J Immunol. 1983 Oct;131(4):1966–1972. [PubMed] [Google Scholar]
  16. Horuk R. The interleukin-8-receptor family: from chemokines to malaria. Immunol Today. 1994 Apr;15(4):169–174. doi: 10.1016/0167-5699(94)90314-X. [DOI] [PubMed] [Google Scholar]
  17. Kniep E. M., Domzig W., Lohmann-Matthes M. L., Kickhöfen B. Partial purification and chemical characterization of macrophage cytotoxicity factor (MCF, MAF) and its separation from migration inhibitory factor (MIF). J Immunol. 1981 Aug;127(2):417–422. [PubMed] [Google Scholar]
  18. Lissner C. R., Swanson R. N., O'Brien A. D. Genetic control of the innate resistance of mice to Salmonella typhimurium: expression of the Ity gene in peritoneal and splenic macrophages isolated in vitro. J Immunol. 1983 Dec;131(6):3006–3013. [PubMed] [Google Scholar]
  19. Loo T. W., Clarke D. M. Functional consequences of glycine mutations in the predicted cytoplasmic loops of P-glycoprotein. J Biol Chem. 1994 Mar 11;269(10):7243–7248. [PubMed] [Google Scholar]
  20. Loo T. W., Clarke D. M. P-glycoprotein. Associations between domains and between domains and molecular chaperones. J Biol Chem. 1995 Sep 15;270(37):21839–21844. doi: 10.1074/jbc.270.37.21839. [DOI] [PubMed] [Google Scholar]
  21. Malo D., Vidal S. M., Hu J., Skamene E., Gros P. High-resolution linkage map in the vicinity of the host resistance locus Bcg. Genomics. 1993 Jun;16(3):655–663. doi: 10.1006/geno.1993.1244. [DOI] [PubMed] [Google Scholar]
  22. Malo D., Vogan K., Vidal S., Hu J., Cellier M., Schurr E., Fuks A., Bumstead N., Morgan K., Gros P. Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites. Genomics. 1994 Sep 1;23(1):51–61. doi: 10.1006/geno.1994.1458. [DOI] [PubMed] [Google Scholar]
  23. Plant J., Glynn A. A. Genetics of resistance to infection with Salmonella typhimurium in mice. J Infect Dis. 1976 Jan;133(1):72–78. doi: 10.1093/infdis/133.1.72. [DOI] [PubMed] [Google Scholar]
  24. Robson H. G., Vas S. I. Resistance of inbred mice to Salmonella typhimurium. J Infect Dis. 1972 Oct;126(4):378–386. doi: 10.1093/infdis/126.4.378. [DOI] [PubMed] [Google Scholar]
  25. Schurr E., Raymond M., Bell J. C., Gros P. Characterization of the multidrug resistance protein expressed in cell clones stably transfected with the mouse mdr1 cDNA. Cancer Res. 1989 May 15;49(10):2729–2733. [PubMed] [Google Scholar]
  26. Skamene E., Gros P., Forget A., Kongshavn P. A., St Charles C., Taylor B. A. Genetic regulation of resistance to intracellular pathogens. Nature. 1982 Jun 10;297(5866):506–509. doi: 10.1038/297506a0. [DOI] [PubMed] [Google Scholar]
  27. Skamene E., Gros P., Forget A., Patel P. J., Nesbitt M. N. Regulation of resistance to leprosy by chromosome 1 locus in the mouse. Immunogenetics. 1984;19(2):117–124. doi: 10.1007/BF00387854. [DOI] [PubMed] [Google Scholar]
  28. Stach J. L., Gros P., Forget A., Skamene E. Phenotypic expression of genetically-controlled natural resistance to Mycobacterium bovis (BCG). J Immunol. 1984 Feb;132(2):888–892. [PubMed] [Google Scholar]
  29. Vidal S. M., Malo D., Vogan K., Skamene E., Gros P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell. 1993 May 7;73(3):469–485. doi: 10.1016/0092-8674(93)90135-d. [DOI] [PubMed] [Google Scholar]
  30. Vidal S., Tremblay M. L., Govoni G., Gauthier S., Sebastiani G., Malo D., Skamene E., Olivier M., Jothy S., Gros P. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med. 1995 Sep 1;182(3):655–666. doi: 10.1084/jem.182.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. White J. K., Shaw M. A., Barton C. H., Cerretti D. P., Williams H., Mock B. A., Carter N. P., Peacock C. S., Blackwell J. M. Genetic and physical mapping of 2q35 in the region of the NRAMP and IL8R genes: identification of a polymorphic repeat in exon 2 of NRAMP. Genomics. 1994 Nov 15;24(2):295–302. doi: 10.1006/geno.1994.1619. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES