Abstract
An extracellular esterase from Candida albicans A-714 was found to be induced in a medium containing 0.7% yeast nitrogen base and 2.5% Tween 80 (polyoxyethylenesorbitan compounds). Enzyme activity, which exists predominantly in the extracellular space, was measured by a colorimetric method using alpha-naphthyl palmitate as a substrate. The induction level of the esterase activity was found to be well correlated with fungal growth and was dependent on the Tween 80 concentration. Such esterase activity was observed only in medium containing Tween 80 or other Tweens as the sole carbon source and therefore was not observed in either peptone-glucose medium or peptone-glucose medium supplemented with Tween 80. The induced esterase was heat labile and had maximum activity at pH 5.5. Enzyme activity was stimulated by the addition of sodium taurocholate, an activator of lipase. Thin-layer chromatography revealed that this enzyme does not hydrolyze triolein and L-alpha-lecithin, suggesting that it is a monoester hydrolase (not a lipase in the strict sense of the word). Esterase activity was examined in 85 clinical isolates of Candida species; C. albicans, C. tropicalis, and C. parapsilosis tended to have higher enzyme activities than C. kefyr, C. krusei, C. glabrata, and C. guilliermondii. Although the physiological properties of this esterase are not clear at present, it was found to be crucial for fungal growth under specific conditions.
Full Text
The Full Text of this article is available as a PDF (227.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Banno Y., Yamada T., Nozawa Y. Secreted phospholipases of the dimorphic fungus, Candida albicans; separation of three enzymes and some biological properties. Sabouraudia. 1985 Feb;23(1):47–54. doi: 10.1080/00362178585380081. [DOI] [PubMed] [Google Scholar]
- Barrett-Bee K., Hayes Y., Wilson R. G., Ryley J. F. A comparison of phospholipase activity, cellular adherence and pathogenicity of yeasts. J Gen Microbiol. 1985 May;131(5):1217–1221. doi: 10.1099/00221287-131-5-1217. [DOI] [PubMed] [Google Scholar]
- Benzonana G., Esposito S. On the positional and chain specificities of Candida cylindracea lipase. Biochim Biophys Acta. 1971 Feb 2;231(1):15–22. doi: 10.1016/0005-2760(71)90251-7. [DOI] [PubMed] [Google Scholar]
- Brahimi-Horn M. C., Guglielmino M. L., Elling L., Sparrow L. G. The esterase profile of a lipase from Candida cylindracea. Biochim Biophys Acta. 1990 Jan 16;1042(1):51–54. doi: 10.1016/0005-2760(90)90055-3. [DOI] [PubMed] [Google Scholar]
- Bramono K., Tsuboi R., Ogawa H. A carbohydrate-degrading enzyme from Candida albicans: correlation between alpha-glucosidase activity and fungal growth. Mycoses. 1995 Sep-Oct;38(9-10):349–353. doi: 10.1111/j.1439-0507.1995.tb00063.x. [DOI] [PubMed] [Google Scholar]
- Casal M., Linares M. J. Contribution to the study of the enzymatic profiles of yeast organisms with medical interest. Mycopathologia. 1983 Mar 22;81(3):155–159. doi: 10.1007/BF00436820. [DOI] [PubMed] [Google Scholar]
- Cutler J. E. Putative virulence factors of Candida albicans. Annu Rev Microbiol. 1991;45:187–218. doi: 10.1146/annurev.mi.45.100191.001155. [DOI] [PubMed] [Google Scholar]
- Grochulski P., Li Y., Schrag J. D., Bouthillier F., Smith P., Harrison D., Rubin B., Cygler M. Insights into interfacial activation from an open structure of Candida rugosa lipase. J Biol Chem. 1993 Jun 15;268(17):12843–12847. [PubMed] [Google Scholar]
- Hattori M., Yoshiura K., Negi M., Ogawa H. Keratinolytic proteinase produced by Candida albicans. Sabouraudia. 1984;22(3):175–183. [PubMed] [Google Scholar]
- Hube B., Monod M., Schofield D. A., Brown A. J., Gow N. A. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol. 1994 Oct;14(1):87–99. doi: 10.1111/j.1365-2958.1994.tb01269.x. [DOI] [PubMed] [Google Scholar]
- Kawaguchi Y., Honda H., Taniguchi-Morimura J., Iwasaki S. The codon CUG is read as serine in an asporogenic yeast Candida cylindracea. Nature. 1989 Sep 14;341(6238):164–166. doi: 10.1038/341164a0. [DOI] [PubMed] [Google Scholar]
- Lampe M. A., Williams M. L., Elias P. M. Human epidermal lipids: characterization and modulations during differentiation. J Lipid Res. 1983 Feb;24(2):131–140. [PubMed] [Google Scholar]
- Longhi S., Fusetti F., Grandori R., Lotti M., Vanoni M., Alberghina L. Cloning and nucleotide sequences of two lipase genes from Candida cylindracea. Biochim Biophys Acta. 1992 Jun 15;1131(2):227–232. doi: 10.1016/0167-4781(92)90085-e. [DOI] [PubMed] [Google Scholar]
- Mago N., Khuller G. K. Subcellular localization of enzymes of phospholipid metabolism in Candida albicans. J Med Vet Mycol. 1990;28(5):355–362. [PubMed] [Google Scholar]
- Mattey M., Morgan D. Secretion of extracellular lipases by Candida lipolytica [proceedings]. Biochem Soc Trans. 1978;6(2):426–428. doi: 10.1042/bst0060426. [DOI] [PubMed] [Google Scholar]
- Mirbod F., Banno Y., Ghannoum M. A., Ibrahim A. S., Nakashima S., Kitajima Y., Cole G. T., Nozawa Y. Purification and characterization of lysophospholipase-transacylase (h-LPTA) from a highly virulent strain of Candida albicans. Biochim Biophys Acta. 1995 Jul 13;1257(2):181–188. doi: 10.1016/0005-2760(95)00072-k. [DOI] [PubMed] [Google Scholar]
- Mishra P., Bolard J., Prasad R. Emerging role of lipids of Candida albicans, a pathogenic dimorphic yeast. Biochim Biophys Acta. 1992 Jul 9;1127(1):1–14. doi: 10.1016/0005-2760(92)90194-z. [DOI] [PubMed] [Google Scholar]
- Negi M., Tsuboi R., Matsui T., Ogawa H. Isolation and characterization of proteinase from Candida albicans: substrate specificity. J Invest Dermatol. 1984 Jul;83(1):32–36. doi: 10.1111/1523-1747.ep12261656. [DOI] [PubMed] [Google Scholar]
- Ogawa H., Nozawa Y., Rojanavanich V., Tsuboi R., Yoshiike T., Banno Y., Takahashi M., Nombela C., Herreros E., Garcia-Saez M. I. Fungal enzymes in the pathogenesis of fungal infections. J Med Vet Mycol. 1992;30 (Suppl 1):189–196. doi: 10.1080/02681219280000881. [DOI] [PubMed] [Google Scholar]
- Pospísil L., Kabátová A. Die lipolytische Aktivität einiger Candida-Arten. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 1976;131(8):692–696. [PubMed] [Google Scholar]
- Price M. F., Wilkinson I. D., Gentry L. O. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia. 1982 Mar;20(1):7–14. doi: 10.1080/00362178285380031. [DOI] [PubMed] [Google Scholar]
- Ran Y., Yoshiike T., Ogawa H. Lipase of Malassezia furfur: some properties and their relationship to cell growth. J Med Vet Mycol. 1993;31(1):77–85. doi: 10.1080/02681219380000081. [DOI] [PubMed] [Google Scholar]
- Rudek W. Esterase activity in Candida species. J Clin Microbiol. 1978 Dec;8(6):756–759. doi: 10.1128/jcm.8.6.756-759.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi M., Banno Y., Nozawa Y. Secreted Candida albicans phospholipases: purification and characterization of two forms of lysophospholipase-transacylase. J Med Vet Mycol. 1991;29(3):193–204. [PubMed] [Google Scholar]
- Takahashi M., Banno Y., Shikano Y., Mori S., Nozawa Y. Purification and characterization of lysophospholipase-transacylase of pathogenic fungus Candida albicans. Biochim Biophys Acta. 1991 Mar 12;1082(2):161–169. doi: 10.1016/0005-2760(91)90190-s. [DOI] [PubMed] [Google Scholar]
- Tsuobi R., Kurita Y., Negi M., Ogawa H. A specific inhibitor of keratinolytic proteinase from Candida albicans could inhibit the cell growth of C. albicans. J Invest Dermatol. 1985 Nov;85(5):438–440. doi: 10.1111/1523-1747.ep12277147. [DOI] [PubMed] [Google Scholar]
- Umezawa H., Aoyagi T., Uotani K., Hamada M., Takeuchi T., Takahashi S. Ebelactone, an inhibitor of esterase, produced by actinomycetes. J Antibiot (Tokyo) 1980 Dec;33(12):1594–1596. doi: 10.7164/antibiotics.33.1594. [DOI] [PubMed] [Google Scholar]
- Whitaker J. F. A rapid and specific method for the determination of pancreatic lipase in serum and urine. Clin Chim Acta. 1973 Feb 28;44(1):133–138. doi: 10.1016/0009-8981(73)90168-x. [DOI] [PubMed] [Google Scholar]