Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Aug;64(8):3032–3037. doi: 10.1128/iai.64.8.3032-3037.1996

Identification of surface-exposed B-cell epitopes on high molecular-weight adhesion proteins of nontypeable Haemophilus influenzae.

S J Barenkam 1, J W St Geme 3rd 1
PMCID: PMC174184  PMID: 8757830

Abstract

We previously reported that two surface-exposed high-molecular-weight proteins, HMW1 and HMW2, expressed by a prototypic strain of nontypeable Haemophilus influenzae (NTHI) mediate attachment to human epithelial cells. These proteins are members of a family of highly immunogenic proteins common to most nontypeable Haemophilus strains. We also reported that immunization with an HMW1-HMW2 mixture modified the course of disease in an animal model of otitis media, suggesting the potential usefulness of these proteins as NTHI vaccine components. Identification of surface-accessible B-cell epitopes could be important to efforts to develop recombinant or synthetic peptide vaccines based upon these high-molecular-weight proteins. Thus, the purpose of the present study was to identify surface-accessible epitopes on the HMW1 and HMW2 proteins by using monoclonal antibodies (MAbs) and to determine the prevalence of these epitopes among the high-molecular-weight proteins expressed by heterologous nontypeable Haemophilus strains. MAbs were generated by immunizing mice with high-molecular-weight proteins purified from prototype strains and were screened by immunoelectron microscopy (IEM) for the ability to recognize surface epitopes. Two MAbs, designated AD6 and 10C5, that recognized surface epitopes by IEM were recovered. In order to map the epitopes recognized by these two MAbs, we constructed a set of HMW1 and HMW2 recombinant fusion proteins using the pGEMEX vectors and examined the reactivity of the MAbs with these fusion proteins. MAb AD6 recognized an epitope in both HMW1 and HMW2 which mapped to the last 75 amino acids at the carboxy termini of the two proteins. When examined for reactivity with heterologous strains, MAb AD6 recognized high-molecular-weight proteins in 75% of 125 unrelated nontypeable Haemophilus strains and, in addition, reacted with three of three such strains when examined by IEM. MAb 10C5 recognized an epitope that mapped to a 155-amino-acid segment near the carboxy terminus of HMW1. This epitope was adjacent to but distinct from the AD6 epitope and was absent from HMW2. The 10C5 epitope was expressed by 40% of the AD6 reactive strains. Identification of shared surface-exposed epitopes on the high-molecular-weight adhesion proteins suggests the possibility of developing recombinant or synthetic peptide-based vaccines protective against disease caused by the majority of NTHI strains.

Full Text

The Full Text of this article is available as a PDF (373.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barenkamp S. J., Bodor F. F. Development of serum bactericidal activity following nontypable Haemophilus influenzae acute otitis media. Pediatr Infect Dis J. 1990 May;9(5):333–339. doi: 10.1097/00006454-199005000-00006. [DOI] [PubMed] [Google Scholar]
  2. Barenkamp S. J. Immunization with high-molecular-weight adhesion proteins of nontypeable Haemophilus influenzae modifies experimental otitis media in chinchillas. Infect Immun. 1996 Apr;64(4):1246–1251. doi: 10.1128/iai.64.4.1246-1251.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barenkamp S. J., Leininger E. Cloning, expression, and DNA sequence analysis of genes encoding nontypeable Haemophilus influenzae high-molecular-weight surface-exposed proteins related to filamentous hemagglutinin of Bordetella pertussis. Infect Immun. 1992 Apr;60(4):1302–1313. doi: 10.1128/iai.60.4.1302-1313.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barenkamp S. J. Protection by serum antibodies in experimental nontypable Haemophilus influenzae otitis media. Infect Immun. 1986 May;52(2):572–578. doi: 10.1128/iai.52.2.572-578.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barenkamp S. J., St Geme J. W., 3rd Genes encoding high-molecular-weight adhesion proteins of nontypeable Haemophilus influenzae are part of gene clusters. Infect Immun. 1994 Aug;62(8):3320–3328. doi: 10.1128/iai.62.8.3320-3328.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beachey E. H. Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surface. J Infect Dis. 1981 Mar;143(3):325–345. doi: 10.1093/infdis/143.3.325. [DOI] [PubMed] [Google Scholar]
  7. Brunham R. C., Plummer F. A., Stephens R. S. Bacterial antigenic variation, host immune response, and pathogen-host coevolution. Infect Immun. 1993 Jun;61(6):2273–2276. doi: 10.1128/iai.61.6.2273-2276.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gnehm H. E., Pelton S. I., Gulati S., Rice P. A. Characterization of antigens from nontypable Haemophilus influenzae recognized by human bactericidal antibodies. Role of Haemophilus outer membrane proteins. J Clin Invest. 1985 May;75(5):1645–1658. doi: 10.1172/JCI111872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Green B. A., Metcalf B. J., Quinn-Dey T., Kirkley D. H., Quataert S. A., Deich R. A. A recombinant non-fatty acylated form of the Hi-PAL (P6) protein of Haemophilus influenzae elicits biologically active antibody against both nontypeable and type b H. influenzae. Infect Immun. 1990 Oct;58(10):3272–3278. doi: 10.1128/iai.58.10.3272-3278.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Green B. A., Quinn-Dey T., Zlotnick G. W. Biologic activities of antibody to a peptidoglycan-associated lipoprotein of Haemophilus influenzae against multiple clinical isolates of H. influenzae type b. Infect Immun. 1987 Dec;55(12):2878–2883. doi: 10.1128/iai.55.12.2878-2883.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Green B. A., Vazquez M. E., Zlotnick G. W., Quigley-Reape G., Swarts J. D., Green I., Cowell J. L., Bluestone C. D., Doyle W. J. Evaluation of mixtures of purified Haemophilus influenzae outer membrane proteins in protection against challenge with nontypeable H. influenzae in the chinchilla otitis media model. Infect Immun. 1993 May;61(5):1950–1957. doi: 10.1128/iai.61.5.1950-1957.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Groeneveld K., van Alphen L., Eijk P. P., Jansen H. M., Zanen H. C. Changes in outer membrane proteins of nontypable Haemophilus influenzae in patients with chronic obstructive pulmonary disease. J Infect Dis. 1988 Aug;158(2):360–365. doi: 10.1093/infdis/158.2.360. [DOI] [PubMed] [Google Scholar]
  13. Groeneveld K., van Alphen L., Voorter C., Eijk P. P., Jansen H. M., Zanen H. C. Antigenic drift of Haemophilus influenzae in patients with chronic obstructive pulmonary disease. Infect Immun. 1989 Oct;57(10):3038–3044. doi: 10.1128/iai.57.10.3038-3044.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hansen E. J., Hart D. A., McGehee J. L., Toews G. B. Immune enhancement of pulmonary clearance of nontypable Haemophilus influenzae. Infect Immun. 1988 Jan;56(1):182–190. doi: 10.1128/iai.56.1.182-190.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Karasic R. B., Trumpp C. E., Gnehm H. E., Rice P. A., Pelton S. I. Modification of otitis media in chinchillas rechallenged with nontypable Haemophilus influenzae and serological response to outer membrane antigens. J Infect Dis. 1985 Feb;151(2):273–279. doi: 10.1093/infdis/151.2.273. [DOI] [PubMed] [Google Scholar]
  16. Kuklinska D., Kilian M. Relative proportions of Haemophilus species in the throat of healthy children and adults. Eur J Clin Microbiol. 1984 Jun;3(3):249–252. doi: 10.1007/BF02014895. [DOI] [PubMed] [Google Scholar]
  17. Murphy T. F., Apicella M. A. Nontypable Haemophilus influenzae: a review of clinical aspects, surface antigens, and the human immune response to infection. Rev Infect Dis. 1987 Jan-Feb;9(1):1–15. doi: 10.1093/clinids/9.1.1. [DOI] [PubMed] [Google Scholar]
  18. Murphy T. F., Bartos L. C. Human bactericidal antibody response to outer membrane protein P2 of nontypeable Haemophilus influenzae. Infect Immun. 1988 Oct;56(10):2673–2679. doi: 10.1128/iai.56.10.2673-2679.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Murphy T. F., Bartos L. C. Purification and analysis with monoclonal antibodies of P2, the major outer membrane protein of nontypable Haemophilus influenzae. Infect Immun. 1988 May;56(5):1084–1089. doi: 10.1128/iai.56.5.1084-1089.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murphy T. F., Bartos L. C., Rice P. A., Nelson M. B., Dudas K. C., Apicella M. A. Identification of a 16,600-dalton outer membrane protein on nontypeable Haemophilus influenzae as a target for human serum bactericidal antibody. J Clin Invest. 1986 Oct;78(4):1020–1027. doi: 10.1172/JCI112656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murphy T. F., Campagnari A. A., Nelson M. B., Apicella M. A. Somatic antigens of Haemophilus influenzae as vaccine components. Pediatr Infect Dis J. 1989 Jan;8(1 Suppl):S66–S68. [PubMed] [Google Scholar]
  22. Rabinovich N. R., McInnes P., Klein D. L., Hall B. F. Vaccine technologies: view to the future. Science. 1994 Sep 2;265(5177):1401–1404. doi: 10.1126/science.7521064. [DOI] [PubMed] [Google Scholar]
  23. Sirakova T., Kolattukudy P. E., Murwin D., Billy J., Leake E., Lim D., DeMaria T., Bakaletz L. Role of fimbriae expressed by nontypeable Haemophilus influenzae in pathogenesis of and protection against otitis media and relatedness of the fimbrin subunit to outer membrane protein A. Infect Immun. 1994 May;62(5):2002–2020. doi: 10.1128/iai.62.5.2002-2020.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. St Geme J. W., 3rd, Falkow S., Barenkamp S. J. High-molecular-weight proteins of nontypable Haemophilus influenzae mediate attachment to human epithelial cells. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2875–2879. doi: 10.1073/pnas.90.7.2875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wallace R. J., Jr, Musher D. M., Septimus E. J., McGowan J. E., Jr, Quinones F. J., Wiss K., Vance P. H., Trier P. A. Haemophilus influenzae infections in adults: characterization of strains by serotypes, biotypes, and beta-lactamase production. J Infect Dis. 1981 Aug;144(2):101–106. doi: 10.1093/infdis/144.2.101. [DOI] [PubMed] [Google Scholar]
  27. Yamanaka N., Faden H. Antibody response to outer membrane protein of nontypeable Haemophilus influenzae in otitis-prone children. J Pediatr. 1993 Feb;122(2):212–218. doi: 10.1016/s0022-3476(06)80115-0. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES