Abstract
Erythrocytes (RBC) in the peritoneal cavity significantly increase the lethality of bacterial peritonitis. The lethality is known to be associated with, and perhaps due to, increased bacterial counts in the peritoneal cavity. The mechanism is unknown. In this study, we investigated the hypothesis that RBC scavenge reactive oxygen intermediates (ROI) and nitric oxide (NO), so that the counterprotective effect is due to a loss of the microbiostatic activity of both ROI and NO. To study this effect, rats were subjected to a peritoneal inoculation of live Escherichia coli without RBC (nonlethal dose) or with RBC (lethal dose). The adjuvant effect of RBC was not modified by NG-monomethyl-L-arginine (NMA, an NO synthase inhibitor), superoxide dismutase, catalase, mannitol, or a combination of these agents. Furthermore, the increased number of bacteria in the peritoneal cavity in the presence of RBC was unaffected by these treatments. The administration of NMA with bacteria alone (no RBC) converted a nonlethal model into a lethal one associated with higher intraperitoneal bacterial counts. A similar effect was seen with superoxide dismutase and catalase but not with mannitol. During bacterial peritonitis in the absence of RBC, superoxide and NO formation (determined by the total nitrite plus nitrate formed) was detected in the ascites and inducible NO synthase mRNA expression was present in the peritoneal cells. In the absence of RBC, superoxide was detected and oxidation of dihydrorhodamine to rhodamine was observed, indicating that peroxynitrite was produced. Both were blocked by the inclusion of RBC. Preinjection with a low inoculum of killed bacteria protected the rats from a subsequent lethal peritoneal bacterial challenge; this effect was reversed by scavenging ROI and NO. The protective effect of killed bacterial pretreatment was lost when RBC were placed in the peritoneal cavity. In vitro bactericidal activity of NO- and ROI-generating macrophages was also inhibited by RBC or by inhibiting ROI and NO formation. Taken together, these data are consistent with the hypothesis that RBC can impair bacterial clearance by removing both NO and ROI, suggesting that NO in combination with superoxide may be important to the antimicrobial defenses of the peritoneal cavity.
Full Text
The Full Text of this article is available as a PDF (278.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agar N. S., Sadrzadeh S. M., Hallaway P. E., Eaton J. W. Erythrocyte catalase. A somatic oxidant defense? J Clin Invest. 1986 Jan;77(1):319–321. doi: 10.1172/JCI112294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunelli L., Crow J. P., Beckman J. S. The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli. Arch Biochem Biophys. 1995 Jan 10;316(1):327–334. doi: 10.1006/abbi.1995.1044. [DOI] [PubMed] [Google Scholar]
- Castro L., Rodriguez M., Radi R. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem. 1994 Nov 25;269(47):29409–29415. [PubMed] [Google Scholar]
- Cummings N. P., Pabst M. J., Johnston R. B., Jr Activation of macrophages for enhanced release of superoxide anion and greater killing of Candida albicans by injection of muramyl dipeptide. J Exp Med. 1980 Dec 1;152(6):1659–1669. doi: 10.1084/jem.152.6.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIS J. H., YULL A. B. A TOXIC FACTOR IN ABDOMINAL INJURY. II. THE ROLE OF THE RED CELL COMPONENT. J Trauma. 1964 Jan;4:84–90. [PubMed] [Google Scholar]
- DAVIS J. H., YULL A. B. A possible toxic factor in abdominal injury. J Trauma. 1962 May;2:291–300. doi: 10.1097/00005373-196205000-00006. [DOI] [PubMed] [Google Scholar]
- Dunn D. L., Barke R. A., Lee J. T., Jr, Condie R. M., Humphrey E. W., Simmons R. L. Mechanisms of the adjuvant effect of hemoglobin in experimental peritonitis. VII. Hemoglobin does not inhibit clearance of Escherichia coli from the peritoneal cavity. Surgery. 1983 Sep;94(3):487–493. [PubMed] [Google Scholar]
- Dunn D. L., Nelson R. D., Condie R. M., Simmons R. L. Mechanisms of the adjuvant effect of hemoglobin in experimental peritonitis. VI. Effects of stroma-free hemoglobin and red blood cell stroma on mortality and neutrophil function. Surgery. 1983 May;93(5):653–659. [PubMed] [Google Scholar]
- Emmendörffer A., Hecht M., Lohmann-Matthes M. L., Roesler J. A fast and easy method to determine the production of reactive oxygen intermediates by human and murine phagocytes using dihydrorhodamine 123. J Immunol Methods. 1990 Aug 7;131(2):269–275. doi: 10.1016/0022-1759(90)90198-5. [DOI] [PubMed] [Google Scholar]
- Filler R. M., Sleeman H. K. Pathogenesis of peritonitis. I. The effect of Escherichia coli and hemoglobin on peritoneal absorption. Surgery. 1967 Mar;61(3):385–392. [PubMed] [Google Scholar]
- Haddad I. Y., Crow J. P., Hu P., Ye Y., Beckman J., Matalon S. Concurrent generation of nitric oxide and superoxide damages surfactant protein A. Am J Physiol. 1994 Sep;267(3 Pt 1):L242–L249. doi: 10.1152/ajplung.1994.267.3.L242. [DOI] [PubMed] [Google Scholar]
- Haddad I. Y., Pataki G., Hu P., Galliani C., Beckman J. S., Matalon S. Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. J Clin Invest. 1994 Dec;94(6):2407–2413. doi: 10.1172/JCI117607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hand W. L. Inhibition of cell-free oxidative bactericidal activity by erythrocytes and hemoglobin. Infect Immun. 1984 May;44(2):465–468. doi: 10.1128/iai.44.2.465-468.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hand W. L., King-Thompson N. L. Effect of erythrocyte ingestion on macrophage antibacterial function. Infect Immun. 1983 Jun;40(3):917–923. doi: 10.1128/iai.40.3.917-923.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hau T., Hoffman R., Simmons R. L. Mechanisms of the adjuvant effect of hemoglobin in experimental peritonitis. I. In vivo inhibition of peritoneal leukocytosis. Surgery. 1978 Feb;83(2):223–229. [PubMed] [Google Scholar]
- Hausladen A., Fridovich I. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem. 1994 Nov 25;269(47):29405–29408. [PubMed] [Google Scholar]
- Hogg N., Joseph J., Kalyanaraman B. The oxidation of alpha-tocopherol and trolox by peroxynitrite. Arch Biochem Biophys. 1994 Oct;314(1):153–158. doi: 10.1006/abbi.1994.1423. [DOI] [PubMed] [Google Scholar]
- Hu P., Ischiropoulos H., Beckman J. S., Matalon S. Peroxynitrite inhibition of oxygen consumption and sodium transport in alveolar type II cells. Am J Physiol. 1994 Jun;266(6 Pt 1):L628–L634. doi: 10.1152/ajplung.1994.266.6.L628. [DOI] [PubMed] [Google Scholar]
- Huie R. E., Padmaja S. The reaction of no with superoxide. Free Radic Res Commun. 1993;18(4):195–199. doi: 10.3109/10715769309145868. [DOI] [PubMed] [Google Scholar]
- Ischiropoulos H., Zhu L., Chen J., Tsai M., Martin J. C., Smith C. D., Beckman J. S. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys. 1992 Nov 1;298(2):431–437. doi: 10.1016/0003-9861(92)90431-u. [DOI] [PubMed] [Google Scholar]
- Joyce L. D., Hau T., Hoffman R., Simmons R. L., Lillehei R. C. Evaluation of the mechanism of zymosan-induced resistance to experimental peritonitis. Surgery. 1978 Jun;83(6):717–725. [PubMed] [Google Scholar]
- Kim Y. M., Bergonia H. A., Müller C., Pitt B. R., Watkins W. D., Lancaster J. R., Jr Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J Biol Chem. 1995 Mar 17;270(11):5710–5713. doi: 10.1074/jbc.270.11.5710. [DOI] [PubMed] [Google Scholar]
- Kim Y. M., Yamazaki I., Piette L. H. The effect of hemoglobin, hematin, and iron on neutrophil inactivation in superoxide generating systems. Arch Biochem Biophys. 1994 Mar;309(2):308–314. doi: 10.1006/abbi.1994.1118. [DOI] [PubMed] [Google Scholar]
- Kooy N. W., Royall J. A., Ischiropoulos H., Beckman J. S. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic Biol Med. 1994 Feb;16(2):149–156. doi: 10.1016/0891-5849(94)90138-4. [DOI] [PubMed] [Google Scholar]
- Lancaster J. R., Jr, Langrehr J. M., Bergonia H. A., Murase N., Simmons R. L., Hoffman R. A. EPR detection of heme and nonheme iron-containing protein nitrosylation by nitric oxide during rejection of rat heart allograft. J Biol Chem. 1992 Jun 5;267(16):10994–10998. [PubMed] [Google Scholar]
- Lancaster J. R., Jr Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8137–8141. doi: 10.1073/pnas.91.17.8137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J. T., Jr, Ahrenholz D. H., Nelson R. D., Simmons R. L. Mechanisms of the adjuvant effect of hemoglobin in experimental peritonitis. V. The significance of the coordinated iron component. Surgery. 1979 Jul;86(1):41–48. [PubMed] [Google Scholar]
- Lorsbach R. B., Murphy W. J., Lowenstein C. J., Snyder S. H., Russell S. W. Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-gamma and lipopolysaccharide. J Biol Chem. 1993 Jan 25;268(3):1908–1913. [PubMed] [Google Scholar]
- Maddaus M. A., Ahrenholz D., Simmons R. L. The biology of peritonitis and implications for treatment. Surg Clin North Am. 1988 Apr;68(2):431–443. doi: 10.1016/s0039-6109(16)44487-7. [DOI] [PubMed] [Google Scholar]
- Matsumoto K., Otani T., Une T., Osada Y., Ogawa H., Azuma I. Stimulation of nonspecific resistance to infection induced by muramyl dipeptide analogs substituted in the gamma-carboxyl group and evaluation of N alpha-muramyl dipeptide-N epsilon-stearoyllysine. Infect Immun. 1983 Mar;39(3):1029–1040. doi: 10.1128/iai.39.3.1029-1040.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
- Nathan C. F., Hibbs J. B., Jr Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol. 1991 Feb;3(1):65–70. doi: 10.1016/0952-7915(91)90079-g. [DOI] [PubMed] [Google Scholar]
- Nathan C., Xie Q. W. Regulation of biosynthesis of nitric oxide. J Biol Chem. 1994 May 13;269(19):13725–13728. [PubMed] [Google Scholar]
- Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys. 1991 Aug 1;288(2):481–487. doi: 10.1016/0003-9861(91)90224-7. [DOI] [PubMed] [Google Scholar]
- Rioux F., Petitclerc E., Audet R., Drapeau G., Fielding R. M., Marceau F. Recombinant human hemoglobin inhibits both constitutive and cytokine-induced nitric oxide-mediated relaxation of rabbit isolated aortic rings. J Cardiovasc Pharmacol. 1994 Aug;24(2):229–237. [PubMed] [Google Scholar]
- Royall J. A., Ischiropoulos H. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys. 1993 May;302(2):348–355. doi: 10.1006/abbi.1993.1222. [DOI] [PubMed] [Google Scholar]
- Scott M. D., Lubin B. H., Zuo L., Kuypers F. A. Erythrocyte defense against hydrogen peroxide: preeminent importance of catalase. J Lab Clin Med. 1991 Jul;118(1):7–16. [PubMed] [Google Scholar]
- Simmons R. L., Diggs J. W., Sleeman H. K. Pathogenesis of peritonitis. 3. Local adjuvant action of hemoglobin in experimental E. coli peritonitis. Surgery. 1968 May;63(5):810–815. [PubMed] [Google Scholar]
- Tanner W. G., Welborn M. B., Shepherd V. L. Tumor necrosis factor-alpha and interleukin-1 alpha synergistically enhance phorbol myristate acetate-induced superoxide production by rat bone marrow-derived macrophages. Am J Respir Cell Mol Biol. 1992 Oct;7(4):379–384. doi: 10.1165/ajrcmb/7.4.379. [DOI] [PubMed] [Google Scholar]
- Tsan M. F., White J. E. Red blood cells protect endothelial cells against H2O2-mediated but not hyperoxia-induced damage. Proc Soc Exp Biol Med. 1988 Jul;188(3):323–327. doi: 10.3181/00379727-188-42741. [DOI] [PubMed] [Google Scholar]
- Ward P. A., Warren J. S., Johnson K. J. Oxygen radicals, inflammation, and tissue injury. Free Radic Biol Med. 1988;5(5-6):403–408. doi: 10.1016/0891-5849(88)90114-1. [DOI] [PubMed] [Google Scholar]
- Williams D. L., Browder I. W., Di Luzio N. R. Immunotherapeutic modification of Escherichia coli--induced experimental peritonitis and bacteremia by glucan. Surgery. 1983 Mar;93(3):448–454. [PubMed] [Google Scholar]
- Wink D. A., Kasprzak K. S., Maragos C. M., Elespuru R. K., Misra M., Dunams T. M., Cebula T. A., Koch W. H., Andrews A. W., Allen J. S. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science. 1991 Nov 15;254(5034):1001–1003. doi: 10.1126/science.1948068. [DOI] [PubMed] [Google Scholar]
- Zhu L., Gunn C., Beckman J. S. Bactericidal activity of peroxynitrite. Arch Biochem Biophys. 1992 Nov 1;298(2):452–457. doi: 10.1016/0003-9861(92)90434-x. [DOI] [PubMed] [Google Scholar]