Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Aug;64(8):3093–3100. doi: 10.1128/iai.64.8.3093-3100.1996

Intermedilysin, a novel cytotoxin specific for human cells secreted by Streptococcus intermedius UNS46 isolated from a human liver abscess.

H Nagamune 1, C Ohnishi 1, A Katsuura 1, K Fushitani 1, R A Whiley 1, A Tsuji 1, Y Matsuda 1
PMCID: PMC174193  PMID: 8757839

Abstract

A novel cytotoxin (intermedilysin) specific for human cells was identified as a cytolytic factor of Streptococcus intermedius UNS46 isolated from a human liver abscess. Intermedilysin caused human cell death with membrane blebs. Intermedilysin was purified from UNS46 culture medium by means of gel filtration and hydrophobic chromatography. The purified toxin was resolved into major and minor bands of 54 and 53 kDa, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These proteins reacted with an antibody against intermedilysin. Five internal peptide fragments of intermedilysin were sequenced and found to have 42 to 71% homology with the thiol-activated cytotoxin pneumolysin. However, the action of intermedilysin differed from that of thiol-activated cytotoxins, especially in terms of a lack of activation by dithiothreitol and resistance to treatments with N-ethylmaleimide and 5,5'-dithio-bis-(2-nitrobenzoic acid), although cholesterol inhibited the toxin activity. Intermedilysin was potently hemolytic on human erythrocytes but was 100-fold less effective on chimpanzee and cynomolgus monkey erythrocytes. Intermedilysin was not hemolytic in nine other animal species tested. Since human erythrocytes treated with trypsin were far less sensitive to intermedilysin than were the intact cells, a cell membrane protein(s) may participate in the intermedilysin action. These data demonstrated that intermedilysin is distinguishable from all known bacterial cytolysins.

Full Text

The Full Text of this article is available as a PDF (478.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arala-Chaves M. P., Higerd T. B., Porto M. T., Munoz J., Goust J. M., Fudenberg H. H., Loadholt C. B. Evidence for the synthesis and release of strongly immunosuppressive, noncytotoxic substances by Streptococcus intermedius. J Clin Invest. 1979 Oct;64(4):871–883. doi: 10.1172/JCI109553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bateman N. T., Eykyn S. J., Phillips I. Pyogenic liver abscess caused by Streptococcus milleri. Lancet. 1975 Mar 22;1(7908):657–659. doi: 10.1016/s0140-6736(75)91760-2. [DOI] [PubMed] [Google Scholar]
  3. Beighton D., Whiley R. A. Sialidase activity of the "Streptococcus milleri group" and other viridans group streptococci. J Clin Microbiol. 1990 Jun;28(6):1431–1433. doi: 10.1128/jcm.28.6.1431-1433.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braun V., Focareta T. Pore-forming bacterial protein hemolysins (cytolysins). Crit Rev Microbiol. 1991;18(2):115–158. doi: 10.3109/10408419109113511. [DOI] [PubMed] [Google Scholar]
  5. Brook I., Frazier E. H. Microaerophilic streptococci as a significant pathogen: a twelve-year review. J Med. 1994;25(3-4):129–144. [PubMed] [Google Scholar]
  6. Cabiaux V., Lorge P., Vandenbranden M., Falmagne P., Ruysschaert J. M. Tetanus toxin induces fusion and aggregation of lipid vesicles containing phosphatidylinositol at low pH. Biochem Biophys Res Commun. 1985 Apr 30;128(2):840–849. doi: 10.1016/0006-291x(85)90123-8. [DOI] [PubMed] [Google Scholar]
  7. Chua D., Reinhart H. H., Sobel J. D. Liver abscess caused by Streptococcus milleri. Rev Infect Dis. 1989 Mar-Apr;11(2):197–202. doi: 10.1093/clinids/11.2.197. [DOI] [PubMed] [Google Scholar]
  8. Geoffroy C., Alouf J. E. Selective purification by thiol-disulfide interchange chromatography of alveolysin, a sulfhydryl-activated toxin of Bacillus alvei. Toxin properties and interaction with cholesterol and liposomes. J Biol Chem. 1983 Aug 25;258(16):9968–9972. [PubMed] [Google Scholar]
  9. Geoffroy C., Mengaud J., Alouf J. E., Cossart P. Alveolysin, the thiol-activated toxin of Bacillus alvei, is homologous to listeriolysin O, perfringolysin O, pneumolysin, and streptolysin O and contains a single cysteine. J Bacteriol. 1990 Dec;172(12):7301–7305. doi: 10.1128/jb.172.12.7301-7305.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gossling J. Occurrence and pathogenicity of the Streptococcus milleri group. Rev Infect Dis. 1988 Mar-Apr;10(2):257–285. doi: 10.1093/clinids/10.2.257. [DOI] [PubMed] [Google Scholar]
  11. Homer K. A., Grootveld M. C., Hawkes J., Naughton D. P., Beighton D. Degradation of hyaluronate by Streptococcus intermedius strain UNS 35. J Med Microbiol. 1994 Dec;41(6):414–422. doi: 10.1099/00222615-41-6-414. [DOI] [PubMed] [Google Scholar]
  12. Homer K. A., Whiley R. A., Beighton D. Production of specific glycosidase activities by Streptococcus intermedius strain UNS35 grown in the presence of mucin. J Med Microbiol. 1994 Sep;41(3):184–190. doi: 10.1099/00222615-41-3-184. [DOI] [PubMed] [Google Scholar]
  13. Iwamoto M., Ohno-Iwashita Y., Ando S. Role of the essential thiol group in the thiol-activated cytolysin from Clostridium perfringens. Eur J Biochem. 1987 Sep 15;167(3):425–430. doi: 10.1111/j.1432-1033.1987.tb13355.x. [DOI] [PubMed] [Google Scholar]
  14. Jacobs A. A., Loeffen P. L., van den Berg A. J., Storm P. K. Identification, purification, and characterization of a thiol-activated hemolysin (suilysin) of Streptococcus suis. Infect Immun. 1994 May;62(5):1742–1748. doi: 10.1093/benz/9780199773787.article.b00034458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson M. K. Properties of purified pneumococcal hemolysin. Infect Immun. 1972 Nov;6(5):755–760. doi: 10.1128/iai.6.5.755-760.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KOEPKE J. A. MENINGITIS DUE TO STREPTOCOCCUS ANGINOSUS (LANCEFIELD GROUP F). JAMA. 1965 Aug 30;193:739–740. doi: 10.1001/jama.1965.03090090045017. [DOI] [PubMed] [Google Scholar]
  17. Kehoe M. A., Miller L., Walker J. A., Boulnois G. J. Nucleotide sequence of the streptolysin O (SLO) gene: structural homologies between SLO and other membrane-damaging, thiol-activated toxins. Infect Immun. 1987 Dec;55(12):3228–3232. doi: 10.1128/iai.55.12.3228-3232.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods. 1984 Dec;10(3-4):203–209. doi: 10.1016/0165-022x(84)90040-x. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lütticken R., Wendorff U., Lütticken D., Johnson E. A., Wannamaker L. W. Studies on streptococci resembling Streptococcus milleri and on an associated surface-protein antigen. J Med Microbiol. 1978 Nov;11(4):419–431. doi: 10.1099/00222615-11-4-419. [DOI] [PubMed] [Google Scholar]
  21. Mengaud J., Vicente M. F., Chenevert J., Pereira J. M., Geoffroy C., Gicquel-Sanzey B., Baquero F., Perez-Diaz J. C., Cossart P. Expression in Escherichia coli and sequence analysis of the listeriolysin O determinant of Listeria monocytogenes. Infect Immun. 1988 Apr;56(4):766–772. doi: 10.1128/iai.56.4.766-772.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morgan P. J., Hyman S. C., Byron O., Andrew P. W., Mitchell T. J., Rowe A. J. Modeling the bacterial protein toxin, pneumolysin, in its monomeric and oligomeric form. J Biol Chem. 1994 Oct 14;269(41):25315–25320. [PubMed] [Google Scholar]
  23. Nagamune H., Muramatsu K., Akamatsu T., Tamai Y., Izumi K., Tsuji A., Matsuda Y. Distribution of the Kexin family proteases in pancreatic islets: PACE4C is specifically expressed in B cells of pancreatic islets. Endocrinology. 1995 Jan;136(1):357–360. doi: 10.1210/endo.136.1.7828552. [DOI] [PubMed] [Google Scholar]
  24. OTTENS H., WINKLER K. C. Indifferent and haemolytic streptococci possessing group-antigen F. J Gen Microbiol. 1962 Apr;28:181–191. doi: 10.1099/00221287-28-1-181. [DOI] [PubMed] [Google Scholar]
  25. Parker M. T., Ball L. C. Streptococci and aerococci associated with systemic infection in man. J Med Microbiol. 1976 Aug;9(3):275–302. doi: 10.1099/00222615-9-3-275. [DOI] [PubMed] [Google Scholar]
  26. Poole P. M., Wilson G. Streptococcus milleri in the appendix. J Clin Pathol. 1977 Oct;30(10):937–942. doi: 10.1136/jcp.30.10.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Posnett D. N., McGrath H., Tam J. P. A novel method for producing anti-peptide antibodies. Production of site-specific antibodies to the T cell antigen receptor beta-chain. J Biol Chem. 1988 Feb 5;263(4):1719–1725. [PubMed] [Google Scholar]
  28. Ruoff K. L. Streptococcus anginosus ("Streptococcus milleri"): the unrecognized pathogen. Clin Microbiol Rev. 1988 Jan;1(1):102–108. doi: 10.1128/cmr.1.1.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Saitou N., Ueda S. Evolutionary rates of insertion and deletion in noncoding nucleotide sequences of primates. Mol Biol Evol. 1994 May;11(3):504–512. doi: 10.1093/oxfordjournals.molbev.a040130. [DOI] [PubMed] [Google Scholar]
  30. Singh K. P., Morris A., Lang S. D., MacCulloch D. M., Bremner D. A. Clinically significant Streptococcus anginosus (Streptococcus milleri) infections: a review of 186 cases. N Z Med J. 1988 Dec 14;101(859):813–816. [PubMed] [Google Scholar]
  31. Taketoshi M., Kitada K., Yakushiji T., Inoue M. Enzymatic differentiation and biochemical and serological characteristics of the clinical isolates of Streptococcus angiosus, S. intermedius and S. constellatus. Microbios. 1993;76(307):115–129. [PubMed] [Google Scholar]
  32. Terleckyj B., Willett N. P., Shockman G. D. Growth of several cariogenic strains of oral streptococci in a chemically defined medium. Infect Immun. 1975 Apr;11(4):649–655. doi: 10.1128/iai.11.4.649-655.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tweten R. K. Nucleotide sequence of the gene for perfringolysin O (theta-toxin) from Clostridium perfringens: significant homology with the genes for streptolysin O and pneumolysin. Infect Immun. 1988 Dec;56(12):3235–3240. doi: 10.1128/iai.56.12.3235-3240.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Van Epps D. E., Andersen B. R. Streptolysin O II. Relationship of Sulfyhdryl Groups to Activity. Infect Immun. 1971 May;3(5):648–652. doi: 10.1128/iai.3.5.648-652.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Van der Auwera P. Clinical significance of Streptococcus milleri. Eur J Clin Microbiol. 1985 Aug;4(4):386–390. doi: 10.1007/BF02148688. [DOI] [PubMed] [Google Scholar]
  36. Walker J. A., Allen R. L., Falmagne P., Johnson M. K., Boulnois G. J. Molecular cloning, characterization, and complete nucleotide sequence of the gene for pneumolysin, the sulfhydryl-activated toxin of Streptococcus pneumoniae. Infect Immun. 1987 May;55(5):1184–1189. doi: 10.1128/iai.55.5.1184-1189.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Whiley R. A., Beighton D. Emended descriptions and recognition of Streptococcus constellatus, Streptococcus intermedius, and Streptococcus anginosus as distinct species. Int J Syst Bacteriol. 1991 Jan;41(1):1–5. doi: 10.1099/00207713-41-1-1. [DOI] [PubMed] [Google Scholar]
  38. Whiley R. A., Beighton D., Winstanley T. G., Fraser H. Y., Hardie J. M. Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus (the Streptococcus milleri group): association with different body sites and clinical infections. J Clin Microbiol. 1992 Jan;30(1):243–244. doi: 10.1128/jcm.30.1.243-244.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Whiley R. A., Fraser H., Hardie J. M., Beighton D. Phenotypic differentiation of Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus strains within the "Streptococcus milleri group". J Clin Microbiol. 1990 Jul;28(7):1497–1501. doi: 10.1128/jcm.28.7.1497-1501.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Whiley R. A., Hardie J. M. DNA-DNA hybridization studies and phenotypic characteristics of strains within the 'Streptococcus milleri group'. J Gen Microbiol. 1989 Oct;135(10):2623–2633. doi: 10.1099/00221287-135-10-2623. [DOI] [PubMed] [Google Scholar]
  41. Willcox M. D., Patrikakis M., Loo C. Y., Knox K. W. Albumin-binding proteins on the surface of the Streptococcus milleri group and characterization of the albumin receptor of Streptococcus intermedius C5. J Gen Microbiol. 1993 Oct;139(10):2451–2458. doi: 10.1099/00221287-139-10-2451. [DOI] [PubMed] [Google Scholar]
  42. Wisnieski B. J., Bramhall J. S. Photolabelling of cholera toxin subunits during membrane penetration. Nature. 1981 Jan 22;289(5795):319–321. doi: 10.1038/289319a0. [DOI] [PubMed] [Google Scholar]
  43. Yamaguchi T., Taketoshi M., Eifuku-Koreeda H., Yakushiji T., Inoue M. Haemagglutinating activities of oral strains of Streptococcus milleri group. Microbios. 1993;75(305):249–259. [PubMed] [Google Scholar]
  44. de Louvois J. Bacteriological examination of pus from abscesses of the central nervous system. J Clin Pathol. 1980 Jan;33(1):66–71. doi: 10.1136/jcp.33.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES