Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Aug;64(8):3174–3179. doi: 10.1128/iai.64.8.3174-3179.1996

Target organs of infection in guinea pigs with acquired congenital syphilis.

K Wicher 1, F Abbruscato 1, V Wicher 1, R Baughn 1, G T Noordhoek 1
PMCID: PMC174204  PMID: 8757850

Abstract

The target organs of infection in guinea pigs with asymptomatic acquired or congenital syphilis were identified by PCR and in some cases by rabbit infectivity test (RIT). The prevalence of Treponema pallidum DNA was examined in the following seven organs: the inguinal and mesenteric lymph nodes, spleen, liver, kidney, heart, and brain. Test samples consisted of 95 organs from two genetically different strains of female guinea pigs (C4-deficient and Albany) with different susceptibilities to cutaneous infection by T. pallidum and 195 organs from their asymptomatic offspring. Twenty organs from dams of both strains injected with heat-killed T. pallidum and 19 organs from their progeny served as negative controls. The infections of mothers and neonates were documented by PCR, RIT, and serology. Though any of the organs tested could be infected, there was a spirochetal predilection for some anatomical locations, such as the lymph nodes, heart, and brain, regardless of the strain, route of maternal infection, and age. None of the 49 organs collected from control animals were positive by PCR. In infected C4-deficient dams, one to four organs were positive by PCR, whereas the organs of 7 of their 27 (25%) asymptomatic offspring were treponemal DNA negative, despite evidence of immunoglobulin M treponemal antibodies. Comparative analysis done by both PCR and RIT on a limited number of samples showed 90% agreement between results. An examination of multiple samples obtained from single organs demonstrated that even within 24 h of spirochetemia, when most organs appeared to be infected, not all samples from an individual organ were positive by PCR. A specific immunological response in guinea pigs with congenital syphilis was a more consistent parameter of vertical transmission than was an analysis of T. pallidum DNA.

Full Text

The Full Text of this article is available as a PDF (254.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BONUGLI F. S. Involvement of the aortic valve and ascending aorta in congenital syphilis. A review. Br J Vener Dis. 1961 Dec;37:257–267. doi: 10.1136/sti.37.4.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boom R., Sol C. J., Salimans M. M., Jansen C. L., Wertheim-van Dillen P. M., van der Noordaa J. Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990 Mar;28(3):495–503. doi: 10.1128/jcm.28.3.495-503.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boom W. H., Liebster L., Abbas A. K., Titus R. G. Patterns of cytokine secretion in murine leishmaniasis: correlation with disease progression or resolution. Infect Immun. 1990 Dec;58(12):3863–3870. doi: 10.1128/iai.58.12.3863-3870.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burger R., Shevach E. M. Evaluation of the role of C4 in the cellular immune response in vitro. J Immunol. 1979 Jun;122(6):2388–2394. [PubMed] [Google Scholar]
  5. Burstain J. M., Grimprel E., Lukehart S. A., Norgard M. V., Radolf J. D. Sensitive detection of Treponema pallidum by using the polymerase chain reaction. J Clin Microbiol. 1991 Jan;29(1):62–69. doi: 10.1128/jcm.29.1.62-69.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooper A. M., Roberts A. D., Rhoades E. R., Callahan J. E., Getzy D. M., Orme I. M. The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology. 1995 Mar;84(3):423–432. [PMC free article] [PubMed] [Google Scholar]
  7. Dallas W. S., Ray P. H., Leong J., Benedict C. D., Stamm L. V., Bassford P. J., Jr Identification and purification of a recombinant Treponema pallidum basic membrane protein antigen expressed in Escherichia coli. Infect Immun. 1987 May;55(5):1106–1115. doi: 10.1128/iai.55.5.1106-1115.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Faith A., Pontesilli O., Unger A., Panayi G. S., Johns P. ELISA assays for IgM and IgG rheumatoid factors. J Immunol Methods. 1982 Dec 17;55(2):169–177. doi: 10.1016/0022-1759(82)90029-1. [DOI] [PubMed] [Google Scholar]
  9. Fiumara N. J. A legacy of syphilis. Arch Dermatol. 1965 Dec;92(6):676–678. [PubMed] [Google Scholar]
  10. Gordon S. M., Eaton M. E., George R., Larsen S., Lukehart S. A., Kuypers J., Marra C. M., Thompson S. The response of symptomatic neurosyphilis to high-dose intravenous penicillin G in patients with human immunodeficiency virus infection. N Engl J Med. 1994 Dec 1;331(22):1469–1473. doi: 10.1056/NEJM199412013312201. [DOI] [PubMed] [Google Scholar]
  11. Grimprel E., Sanchez P. J., Wendel G. D., Burstain J. M., McCracken G. H., Jr, Radolf J. D., Norgard M. V. Use of polymerase chain reaction and rabbit infectivity testing to detect Treponema pallidum in amniotic fluid, fetal and neonatal sera, and cerebrospinal fluid. J Clin Microbiol. 1991 Aug;29(8):1711–1718. doi: 10.1128/jcm.29.8.1711-1718.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hay P. E., Clarke J. R., Strugnell R. A., Taylor-Robinson D., Goldmeier D. Use of the polymerase chain reaction to detect DNA sequences specific to pathogenic treponemes in cerebrospinal fluid. FEMS Microbiol Lett. 1990 Mar 15;56(3):233–238. doi: 10.1111/j.1574-6968.1990.tb13943.x. [DOI] [PubMed] [Google Scholar]
  13. Horowitz H. W., Valsamis M. P., Wicher V., Abbruscato F., Larsen S. A., Wormser G. P., Wicher K. Brief report: cerebral syphilitic gumma confirmed by the polymerase chain reaction in a man with human immunodeficiency virus infection. N Engl J Med. 1994 Dec 1;331(22):1488–1491. doi: 10.1056/NEJM199412013312204. [DOI] [PubMed] [Google Scholar]
  14. Jethwa H. S., Schmitz J. L., Dallabetta G., Behets F., Hoffman I., Hamilton H., Lule G., Cohen M., Folds J. D. Comparison of molecular and microscopic techniques for detection of Treponema pallidum in genital ulcers. J Clin Microbiol. 1995 Jan;33(1):180–183. doi: 10.1128/jcm.33.1.180-183.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lukehart S. A., Hook E. W., 3rd, Baker-Zander S. A., Collier A. C., Critchlow C. W., Handsfield H. H. Invasion of the central nervous system by Treponema pallidum: implications for diagnosis and treatment. Ann Intern Med. 1988 Dec 1;109(11):855–862. doi: 10.7326/0003-4819-109-11-855. [DOI] [PubMed] [Google Scholar]
  16. Musher D. M. Syphilis, neurosyphilis, penicillin, and AIDS. J Infect Dis. 1991 Jun;163(6):1201–1206. doi: 10.1093/infdis/163.6.1201. [DOI] [PubMed] [Google Scholar]
  17. Noordhoek G. T., Wolters E. C., de Jonge M. E., van Embden J. D. Detection by polymerase chain reaction of Treponema pallidum DNA in cerebrospinal fluid from neurosyphilis patients before and after antibiotic treatment. J Clin Microbiol. 1991 Sep;29(9):1976–1984. doi: 10.1128/jcm.29.9.1976-1984.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Oppenheimer E. H., Hardy J. B. Congenital syphilis in the newborn infant: clinical and pathological observations in recent cases. Johns Hopkins Med J. 1971 Aug;129(2):63–82. [PubMed] [Google Scholar]
  19. Penn C. W., Rhodes J. G. Surface-associated antigens of Treponema pallidum concealed by an inert outer layer. Immunology. 1982 May;46(1):9–16. [PMC free article] [PubMed] [Google Scholar]
  20. Radolf J. D., Norgard M. V., Schulz W. W. Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum. Proc Natl Acad Sci U S A. 1989 Mar;86(6):2051–2055. doi: 10.1073/pnas.86.6.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sieling P. A., Modlin R. L. Regulation of cytokine patterns in leprosy. Ann N Y Acad Sci. 1994 Aug 15;730:42–52. doi: 10.1111/j.1749-6632.1994.tb44238.x. [DOI] [PubMed] [Google Scholar]
  22. Singh V. K., Tingle A. J. Detection of circulating immune complexes by a C1q-microplate ELISA system. J Immunol Methods. 1982;50(1):109–114. doi: 10.1016/0022-1759(82)90308-8. [DOI] [PubMed] [Google Scholar]
  23. Sánchez P. J., Wendel G. D., Jr, Grimprel E., Goldberg M., Hall M., Arencibia-Mireles O., Radolf J. D., Norgard M. V. Evaluation of molecular methodologies and rabbit infectivity testing for the diagnosis of congenital syphilis and neonatal central nervous system invasion by Treponema pallidum. J Infect Dis. 1993 Jan;167(1):148–157. doi: 10.1093/infdis/167.1.148. [DOI] [PubMed] [Google Scholar]
  24. Walker E. M., Zampighi G. A., Blanco D. R., Miller J. N., Lovett M. A. Demonstration of rare protein in the outer membrane of Treponema pallidum subsp. pallidum by freeze-fracture analysis. J Bacteriol. 1989 Sep;171(9):5005–5011. doi: 10.1128/jb.171.9.5005-5011.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wicher K., Baughn R. E., Wicher V., Nakeeb S. Experimental congenital syphilis: guinea pig model. Infect Immun. 1992 Jan;60(1):271–277. doi: 10.1128/iai.60.1.271-277.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wicher K., Noordhoek G. T., Abbruscato F., Wicher V. Detection of Treponema pallidum in early syphilis by DNA amplification. J Clin Microbiol. 1992 Feb;30(2):497–500. doi: 10.1128/jcm.30.2.497-500.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wicher K., Wicher V. Experimental syphilis in guinea pig. Crit Rev Microbiol. 1989;16(3):181–234. doi: 10.3109/10408418909104471. [DOI] [PubMed] [Google Scholar]
  28. Wicher K., Wicher V., Gruhn R. F. Differences in susceptibility to infection with Treponema pallidum (Nichols) between five strains of guinea pig. Genitourin Med. 1985 Feb;61(1):21–26. doi: 10.1136/sti.61.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wicher K., Wicher V. Median infective dose of Treponema pallidum determined in a highly susceptible guinea pig strain. Infect Immun. 1991 Jan;59(1):453–456. doi: 10.1128/iai.59.1.453-456.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wicher V., Baughn R. E., Wicher K. Congenital and neonatal syphilis in guinea-pigs show a different pattern of immune response. Immunology. 1994 Jul;82(3):404–409. [PMC free article] [PubMed] [Google Scholar]
  31. Zeltzer P. M., Pepose J. S., Bishop N. H., Miller J. N. Microassay for immunoglobulin G antibodies to Treponema pallidum with radioiodinated protein A from staphylococcus aureus: immunoglobulin G response in experimental syphilis in rabbits. Infect Immun. 1978 Jul;21(1):163–170. doi: 10.1128/iai.21.1.163-170.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES