Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Aug;64(8):3210–3217. doi: 10.1128/iai.64.8.3210-3217.1996

The (alpha2-->8)-linked polysialic acid capsule of group B Neisseria meningitidis modifies multiple steps during interaction with human macrophages.

R C Read 1, S Zimmerli 1, C Broaddus 1, D A Sanan 1, D S Stephens 1, J D Ernst 1
PMCID: PMC174209  PMID: 8757855

Abstract

Group B Neisseria meningitidis causes systemic disease, including meningitis, after initial colonization and subsequent penetration of nasopharyngeal mucosa, a tissue which is richly populated by macrophages. In an initial effort to characterize the interaction of N. meningitidis and mature human macrophages, the influence of the alpha2-->8) -linked polysialic acid capsule on the interaction of N. meningitidis with human monocyte-derived macrophages was investigated with a capsulate case isolate and an isogenic Tn916-derived noncapsulate transformant. The capsulate strain was fourfold less adherent to the macrophage surface after cold incubation, although adherence of both strains was significantly increased after opsonization with nonimmune C5-depleted serum. When opsonized inocula were adjusted so that they adhered to macrophages in equal numbers, the two strains were internalized at equivalent rates and both entered membrane-bound compartments (phagosomes). Colocalization of bacteria with the late endosomal and lysosomal marker lysosome-associated membrane protein revealed that fusion of lysosomes with phagosomes containing the capsulate organism was significantly reduced 10 and 30 min after entry, but by 1 h, no difference between the strains was observed. Once internalized, meningococci were effectively killed, although more rapid killing of the capsulate strain was observed over the first 3 h. These results indicate that the (alpha2-->8)-linked polysialic acid capsule modifies the interaction of meningococci with human macrophages at multiple steps, including adherence to the macrophage surface and phagosome-lysosome fusion. Moreover, the discordance between the kinetics of phagosome- lysosome fusion and bacterial killing suggests that a nonlysosomal mechanism may be responsible for a significant fraction of macrophage killing of N. meningitidis.

Full Text

The Full Text of this article is available as a PDF (450.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broome C. V. The carrier state: Neisseria meningitidis. J Antimicrob Chemother. 1986 Jul;18 (Suppl A):25–34. doi: 10.1093/jac/18.supplement_a.25. [DOI] [PubMed] [Google Scholar]
  2. Cartwright K. A., Stuart J. M., Jones D. M., Noah N. D. The Stonehouse survey: nasopharyngeal carriage of meningococci and Neisseria lactamica. Epidemiol Infect. 1987 Dec;99(3):591–601. doi: 10.1017/s0950268800066449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clemens D. L., Horwitz M. A. Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med. 1995 Jan 1;181(1):257–270. doi: 10.1084/jem.181.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fields P. I., Swanson R. V., Haidaris C. G., Heffron F. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5189–5193. doi: 10.1073/pnas.83.14.5189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Forsgren J., Samuelson A., Ahlin A., Jonasson J., Rynnel-Dagö B., Lindberg A. Haemophilus influenzae resides and multiplies intracellularly in human adenoid tissue as demonstrated by in situ hybridization and bacterial viability assay. Infect Immun. 1994 Feb;62(2):673–679. doi: 10.1128/iai.62.2.673-679.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gmelig-Meyling F., Waldmann T. A. Separation of human blood monocytes and lymphocytes on a continuous Percoll gradient. J Immunol Methods. 1980;33(1):1–9. doi: 10.1016/0022-1759(80)90077-0. [DOI] [PubMed] [Google Scholar]
  7. Hart P. D., Young M. R., Gordon A. H., Sullivan K. H. Inhibition of phagosome-lysosome fusion in macrophages by certain mycobacteria can be explained by inhibition of lysosomal movements observed after phagocytosis. J Exp Med. 1987 Oct 1;166(4):933–946. doi: 10.1084/jem.166.4.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hiemstra P. S., van Furth R. Antimicrobial mechanisms: antimicrobial polypeptides of mononuclear phagocytes. Immunol Ser. 1994;60:197–202. [PubMed] [Google Scholar]
  9. Honig M. G., Hume R. I. Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol. 1986 Jul;103(1):171–187. doi: 10.1083/jcb.103.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horwitz M. A. Formation of a novel phagosome by the Legionnaires' disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med. 1983 Oct 1;158(4):1319–1331. doi: 10.1084/jem.158.4.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jarvis G. A., Vedros N. A. Sialic acid of group B Neisseria meningitidis regulates alternative complement pathway activation. Infect Immun. 1987 Jan;55(1):174–180. doi: 10.1128/iai.55.1.174-180.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kornfeld S., Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525. doi: 10.1146/annurev.cb.05.110189.002411. [DOI] [PubMed] [Google Scholar]
  13. Lowell G. H., Smith L. F., Artenstein M. S., Nash G. S., MacDermott R. P., Jr Antibody-dependent cell-mediated antibacterial activity of human mononuclear cells. I. K lymphocytes and monocytes are effective against meningococi in cooperation with human imune sera. J Exp Med. 1979 Jul 1;150(1):127–137. doi: 10.1084/jem.150.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lowell G. H., Smith L. F., Griffiss J. M., Brandt B. L., MacDermott R. P. Antibody-dependent mononuclear cell-mediated antimeningococcal activity. Comparison of the effects of convalescent and postimmunization immunoglobulins G, M, and A. J Clin Invest. 1980 Aug;66(2):260–267. doi: 10.1172/JCI109852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McNeil G., Virji M., Moxon E. R. Interactions of Neisseria meningitidis with human monocytes. Microb Pathog. 1994 Feb;16(2):153–163. doi: 10.1006/mpat.1994.1016. [DOI] [PubMed] [Google Scholar]
  16. Miller S. I. PhoP/PhoQ: macrophage-specific modulators of Salmonella virulence? Mol Microbiol. 1991 Sep;5(9):2073–2078. doi: 10.1111/j.1365-2958.1991.tb02135.x. [DOI] [PubMed] [Google Scholar]
  17. Mosser D. M., Edelson P. J. The third component of complement (C3) is responsible for the intracellular survival of Leishmania major. 1987 May 28-Jun 3Nature. 327(6120):329–331. doi: 10.1038/327329b0. [DOI] [PubMed] [Google Scholar]
  18. Pipkorn U., Karlsson G., Enerbäck L. A brush method to harvest cells from the nasal mucosa for microscopic and biochemical analysis. J Immunol Methods. 1988 Aug 9;112(1):37–42. doi: 10.1016/0022-1759(88)90030-0. [DOI] [PubMed] [Google Scholar]
  19. Read R. C., Fox A., Miller K., Gray T., Jones N., Borrows R., Jones D. M., Finch R. G. Experimental infection of human nasal mucosal explants with Neisseria meningitidis. J Med Microbiol. 1995 May;42(5):353–361. doi: 10.1099/00222615-42-5-353. [DOI] [PubMed] [Google Scholar]
  20. Robinson J. M., Badwey J. A. Production of active oxygen species by phagocytic leukocytes. Immunol Ser. 1994;60:159–178. [PubMed] [Google Scholar]
  21. Schell D. N., Durham D., Murphree S. S., Muntz K. H., Shaul P. W. Ontogeny of beta-adrenergic receptors in pulmonary arterial smooth muscle, bronchial smooth muscle, and alveolar lining cells in the rat. Am J Respir Cell Mol Biol. 1992 Sep;7(3):317–324. doi: 10.1165/ajrcmb/7.3.317. [DOI] [PubMed] [Google Scholar]
  22. Sjursen H., Lehmann V., Naess A., Hervig T., Flø R. W., Maehle B., Halstensen A. I., Frøholm L. O. Monocyte phagocytosis of opsonized Neisseria meningitidis serogroup B. APMIS. 1992 Mar;100(3):209–220. [PubMed] [Google Scholar]
  23. Smith L. F., Lowell G. H. Antibody-dependent cell-mediated antibacterial activity of human mononuclear cells. II. Immune specificity of antimeningococcal activity. J Infect Dis. 1980 Jun;141(6):748–751. doi: 10.1093/infdis/141.6.748. [DOI] [PubMed] [Google Scholar]
  24. Steinberg T. H., Swanson J. A. Measurement of phagosome-lysosome fusion and phagosomal pH. Methods Enzymol. 1994;236:147–160. doi: 10.1016/0076-6879(94)36014-6. [DOI] [PubMed] [Google Scholar]
  25. Stephens D. S., Spellman P. A., Swartley J. S. Effect of the (alpha 2-->8)-linked polysialic acid capsule on adherence of Neisseria meningitidis to human mucosal cells. J Infect Dis. 1993 Feb;167(2):475–479. doi: 10.1093/infdis/167.2.475. [DOI] [PubMed] [Google Scholar]
  26. Stephens D. S., Swartley J. S., Kathariou S., Morse S. A. Insertion of Tn916 in Neisseria meningitidis resulting in loss of group B capsular polysaccharide. Infect Immun. 1991 Nov;59(11):4097–4102. doi: 10.1128/iai.59.11.4097-4102.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Swartley J. S., Stephens D. S. Identification of a genetic locus involved in the biosynthesis of N-acetyl-D-mannosamine, a precursor of the (alpha 2-->8)-linked polysialic acid capsule of serogroup B Neisseria meningitidis. J Bacteriol. 1994 Mar;176(5):1530–1534. doi: 10.1128/jb.176.5.1530-1534.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tilney L. G., Portnoy D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol. 1989 Oct;109(4 Pt 1):1597–1608. doi: 10.1083/jcb.109.4.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Titus R. G., Theodos C. M., Shankar A. H., Hall L. R. Interactions between Leishmania major and macrophages. Immunol Ser. 1994;60:437–459. [PubMed] [Google Scholar]
  30. Unkeless J. C., Scigliano E., Freedman V. H. Structure and function of human and murine receptors for IgG. Annu Rev Immunol. 1988;6:251–281. doi: 10.1146/annurev.iy.06.040188.001343. [DOI] [PubMed] [Google Scholar]
  31. Xu S., Cooper A., Sturgill-Koszycki S., van Heyningen T., Chatterjee D., Orme I., Allen P., Russell D. G. Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. J Immunol. 1994 Sep 15;153(6):2568–2578. [PubMed] [Google Scholar]
  32. Zimmerli S., Majeed M., Gustavsson M., Stendahl O., Sanan D. A., Ernst J. D. Phagosome-lysosome fusion is a calcium-independent event in macrophages. J Cell Biol. 1996 Jan;132(1-2):49–61. doi: 10.1083/jcb.132.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES