Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Aug;64(8):3301–3309. doi: 10.1128/iai.64.8.3301-3309.1996

Regulated expression of Clostridium perfringens enterotoxin in naturally cpe-negative type A, B, and C isolates of C. perfringens.

J R Czeczulin 1, R E Collie 1, B A McClane 1
PMCID: PMC174222  PMID: 8757868

Abstract

Clostridium perfringens enterotoxin (CPE), the virulence factor responsible for symptoms associated with C. perfringens type A food poisoning, is produced by enterotoxigenic C. perfringens type A isolates when these bacteria sporulate in the gastrointestinal tract. Less than 5% of the global C. perfringens population apparently carries the cpe gene. To assess the distribution of cpe-regulatory factors, we investigated whether the cpe gene of a C. perfringens food poisoning isolate can be expressed and properly regulated (i.e., expressed in a sporulation-associated manner) when transformed into naturally cpe-negative C. perfringens isolates. Sporulation-associated CPE expression was observed when low-copy-number plasmids carrying either a 5.7-kb DNA insert, containing the cpe open reading frame plus >1 kb each of upstream and downstream flanking sequences from C. perfringens food poisoning isolate NCTC 8239, or a 1.6-kb insert, containing only the cpe open reading frame of NCTC 8239, were electroporated into cpe-negative C. perfringens type A, B, and C isolates. Northern (RNA) blot analysis demonstrated that the sizes of the cpe message in the transformants and the naturally enterotoxigenic C. perfringens NCTC 8239 were similar and that this message was detectable only in sporulating cultures of the transformants or NCTC 8239. These studies strongly suggest that many, if not all, cpe-negative C. perfringens isolates (including type B isolates, which are not known to naturally express CPE) produce a factor(s) involved in normal (i.e., sporulation-associated) transcriptional regulation of CPE expression by C. perfringens food poisoning isolates. These findings are consistent with this CPE-regulatory factor(s) also regulating the expression of other genes in C. perfringens.

Full Text

The Full Text of this article is available as a PDF (416.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen S. P., Blaschek H. P. Electroporation-induced transformation of intact cells of Clostridium perfringens. Appl Environ Microbiol. 1988 Sep;54(9):2322–2324. doi: 10.1128/aem.54.9.2322-2324.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen S. P., Blaschek H. P. Factors involved in the electroporation-induced transformation of Clostridium perfringens. FEMS Microbiol Lett. 1990 Jul;58(2):217–220. doi: 10.1111/j.1574-6968.1990.tb13981.x. [DOI] [PubMed] [Google Scholar]
  3. Brynestad S., Iwanejko L. A., Stewart G. S., Granum P. E. A complex array of Hpr consensus DNA recognition sequences proximal to the enterotoxin gene in Clostridium perfringens type A. Microbiology. 1994 Jan;140(Pt 1):97–104. doi: 10.1099/13500872-140-1-97. [DOI] [PubMed] [Google Scholar]
  4. Canard B., Saint-Joanis B., Cole S. T. Genomic diversity and organization of virulence genes in the pathogenic anaerobe Clostridium perfringens. Mol Microbiol. 1992 Jun;6(11):1421–1429. doi: 10.1111/j.1365-2958.1992.tb00862.x. [DOI] [PubMed] [Google Scholar]
  5. Cornillot E., Saint-Joanis B., Daube G., Katayama S., Granum P. E., Canard B., Cole S. T. The enterotoxin gene (cpe) of Clostridium perfringens can be chromosomal or plasmid-borne. Mol Microbiol. 1995 Feb;15(4):639–647. doi: 10.1111/j.1365-2958.1995.tb02373.x. [DOI] [PubMed] [Google Scholar]
  6. Craven S. E., Blankenship L. C. Effect of purine derivatives, papaverine hydrochloride, and imidazole on enterotoxin formation by Clostridium perfringens type A. Can J Microbiol. 1982 Jul;28(7):851–859. doi: 10.1139/m82-127. [DOI] [PubMed] [Google Scholar]
  7. Czeczulin J. R., Hanna P. C., McClane B. A. Cloning, nucleotide sequencing, and expression of the Clostridium perfringens enterotoxin gene in Escherichia coli. Infect Immun. 1993 Aug;61(8):3429–3439. doi: 10.1128/iai.61.8.3429-3439.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Finckh U., Lingenfelter P. A., Myerson D. Producing single-stranded DNA probes with the Taq DNA polymerase: a high yield protocol. Biotechniques. 1991 Jan;10(1):35-6, 38-9. [PubMed] [Google Scholar]
  9. Garnier T., Cole S. T. Studies of UV-inducible promoters from Clostridium perfringens in vivo and in vitro. Mol Microbiol. 1988 Sep;2(5):607–614. doi: 10.1111/j.1365-2958.1988.tb00069.x. [DOI] [PubMed] [Google Scholar]
  10. Hunter S. E., Clarke I. N., Kelly D. C., Titball R. W. Cloning and nucleotide sequencing of the Clostridium perfringens epsilon-toxin gene and its expression in Escherichia coli. Infect Immun. 1992 Jan;60(1):102–110. doi: 10.1128/iai.60.1.102-110.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kokai-Kun J. F., Songer J. G., Czeczulin J. R., Chen F., McClane B. A. Comparison of Western immunoblots and gene detection assays for identification of potentially enterotoxigenic isolates of Clostridium perfringens. J Clin Microbiol. 1994 Oct;32(10):2533–2539. doi: 10.1128/jcm.32.10.2533-2539.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McClane B. A. Clostridium perfringens enterotoxin acts by producing small molecule permeability alterations in plasma membranes. Toxicology. 1994 Feb 28;87(1-3):43–67. doi: 10.1016/0300-483x(94)90154-6. [DOI] [PubMed] [Google Scholar]
  13. Melville S. B., Labbe R., Sonenshein A. L. Expression from the Clostridium perfringens cpe promoter in C. perfringens and Bacillus subtilis. Infect Immun. 1994 Dec;62(12):5550–5558. doi: 10.1128/iai.62.12.5550-5558.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Phillips-Jones M. K. Plasmid transformation of Clostridium perfringens by electroporation methods. FEMS Microbiol Lett. 1990 Jan 1;54(1-3):221–226. doi: 10.1016/0378-1097(90)90286-y. [DOI] [PubMed] [Google Scholar]
  15. Rood J. I., Cole S. T. Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol Rev. 1991 Dec;55(4):621–648. doi: 10.1128/mr.55.4.621-648.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sacks L. E., Thompson P. A. Clear, defined medium for the sporulation of Clostridium perfringens. Appl Environ Microbiol. 1978 Feb;35(2):405–410. doi: 10.1128/aem.35.2.405-410.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Saint-Joanis B., Garnier T., Cole S. T. Gene cloning shows the alpha-toxin of Clostridium perfringens to contain both sphingomyelinase and lecithinase activities. Mol Gen Genet. 1989 Nov;219(3):453–460. doi: 10.1007/BF00259619. [DOI] [PubMed] [Google Scholar]
  18. Skjelkvålé R., Duncan C. L. Enterotoxin formation by different toxigenic types of Clostridium perfringens. Infect Immun. 1975 Mar;11(3):563–575. doi: 10.1128/iai.11.3.563-575.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sloan J., Warner T. A., Scott P. T., Bannam T. L., Berryman D. I., Rood J. I. Construction of a sequenced Clostridium perfringens-Escherichia coli shuttle plasmid. Plasmid. 1992 May;27(3):207–219. doi: 10.1016/0147-619x(92)90023-4. [DOI] [PubMed] [Google Scholar]
  20. Strauch M. A., Hoch J. A. Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol Microbiol. 1993 Feb;7(3):337–342. doi: 10.1111/j.1365-2958.1993.tb01125.x. [DOI] [PubMed] [Google Scholar]
  21. Taylor D. E., Brose E. C. Modified Birnboim-Doly method for rapid detection of plasmid copy number. Nucleic Acids Res. 1988 Sep 26;16(18):9056–9056. doi: 10.1093/nar/16.18.9056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Van Damme-Jongsten M., Wernars K., Notermans S. Cloning and sequencing of the Clostridium perfringens enterotoxin gene. Antonie Van Leeuwenhoek. 1989 Aug;56(2):181–190. doi: 10.1007/BF00399981. [DOI] [PubMed] [Google Scholar]
  23. Wieckowski E. U., Wnek A. P., McClane B. A. Evidence that an approximately 50-kDa mammalian plasma membrane protein with receptor-like properties mediates the amphiphilicity of specifically bound Clostridium perfringens enterotoxin. J Biol Chem. 1994 Apr 8;269(14):10838–10848. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES