Abstract
Apical membrane antigen 1 (AMA-1), an asexual blood-stage antigen of Plasmodium falciparum, is an important candidate for testing as a component of a malaria vaccine. This study investigates the nature of diversity in the Plasmodium chabaudi adami homolog of AMA-1 and the impact of that diversity on the efficacy of the recombinant antigen as a vaccine against challenge with a heterologous strain of P. chabaudi. The nucleotide sequence of the AMA-1 gene from strain DS differs from the published 556KA sequence at 79 sites. The large number of mutations, the nonrandom distribution of both synonymous and nonsynonymous mutations, and the nature of both the codon changes and the resulting amino acid substitutions suggest that positive selection operates on the AMA-1 gene in regions coding for antigenic sites. Protective immune responses induced by AMA-1 were strain specific. Immunization of mice with the refolded ectodomain of DS AMA-1 provided partial protection against challenge with virulent DS (homologous) parasites but failed to protect against challenge with avirulent 556KA (heterologous) parasites. Passive immunization of mice with rabbit antibodies raised against the same antigen had little effect on heterologous challenge but provided significant protection against the homologous DS parasites.
Full Text
The Full Text of this article is available as a PDF (269.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cheng Q., Saul A. Sequence analysis of the apical membrane antigen I (AMA-1) of Plasmodium vivax. Mol Biochem Parasitol. 1994 May;65(1):183–187. doi: 10.1016/0166-6851(94)90127-9. [DOI] [PubMed] [Google Scholar]
- Collins W. E., Pye D., Crewther P. E., Vandenberg K. L., Galland G. G., Sulzer A. J., Kemp D. J., Edwards S. J., Coppel R. L., Sullivan J. S. Protective immunity induced in squirrel monkeys with recombinant apical membrane antigen-1 of Plasmodium fragile. Am J Trop Med Hyg. 1994 Dec;51(6):711–719. doi: 10.4269/ajtmh.1994.51.711. [DOI] [PubMed] [Google Scholar]
- Crewther P. E., Bianco A. E., Brown G. V., Coppel R. L., Stahl H. D., Kemp D. J., Anders R. F. Affinity purification of human antibodies directed against cloned antigens of Plasmodium falciparum. J Immunol Methods. 1986 Feb 12;86(2):257–264. doi: 10.1016/0022-1759(86)90462-x. [DOI] [PubMed] [Google Scholar]
- Crewther P. E., Culvenor J. G., Silva A., Cooper J. A., Anders R. F. Plasmodium falciparum: two antigens of similar size are located in different compartments of the rhoptry. Exp Parasitol. 1990 Feb;70(2):193–206. doi: 10.1016/0014-4894(90)90100-q. [DOI] [PubMed] [Google Scholar]
- Deans J. A., Alderson T., Thomas A. W., Mitchell G. H., Lennox E. S., Cohen S. Rat monoclonal antibodies which inhibit the in vitro multiplication of Plasmodium knowlesi. Clin Exp Immunol. 1982 Aug;49(2):297–309. [PMC free article] [PubMed] [Google Scholar]
- Deans J. A., Jean W. C. Structural studies on a putative protective Plasmodium knowlesi merozoite antigen. Mol Biochem Parasitol. 1987 Nov;26(1-2):155–166. doi: 10.1016/0166-6851(87)90139-3. [DOI] [PubMed] [Google Scholar]
- Deans J. A., Knight A. M., Jean W. C., Waters A. P., Cohen S., Mitchell G. H. Vaccination trials in rhesus monkeys with a minor, invariant, Plasmodium knowlesi 66 kD merozoite antigen. Parasite Immunol. 1988 Sep;10(5):535–552. doi: 10.1111/j.1365-3024.1988.tb00241.x. [DOI] [PubMed] [Google Scholar]
- Dieckmann-Schuppert A., Bause E., Schwarz R. T. Glycosylation reactions in Plasmodium falciparum, Toxoplasma gondii, and Trypanosoma brucei brucei probed by the use of synthetic peptides. Biochim Biophys Acta. 1994 Jan 5;1199(1):37–44. doi: 10.1016/0304-4165(94)90093-0. [DOI] [PubMed] [Google Scholar]
- Dieckmann-Schuppert A., Bender S., Odenthal-Schnittler M., Bause E., Schwarz R. T. Apparent lack of N-glycosylation in the asexual intraerythrocytic stage of Plasmodium falciparum. Eur J Biochem. 1992 Apr 15;205(2):815–825. doi: 10.1111/j.1432-1033.1992.tb16846.x. [DOI] [PubMed] [Google Scholar]
- Dutta S., Malhotra P., Chauhan V. S. Sequence analysis of apical membrane antigen 1 (AMA-1) of Plasmodium cynomolgi bastianelli. Mol Biochem Parasitol. 1995 Jul;73(1-2):267–270. doi: 10.1016/0166-6851(95)00112-e. [DOI] [PubMed] [Google Scholar]
- Hughes A. L., Ota T., Nei M. Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. Mol Biol Evol. 1990 Nov;7(6):515–524. doi: 10.1093/oxfordjournals.molbev.a040626. [DOI] [PubMed] [Google Scholar]
- Hughes M. K., Hughes A. L. Natural selection on Plasmodium surface proteins. Mol Biochem Parasitol. 1995 Apr;71(1):99–113. doi: 10.1016/0166-6851(95)00037-2. [DOI] [PubMed] [Google Scholar]
- Ina Y. New methods for estimating the numbers of synonymous and nonsynonymous substitutions. J Mol Evol. 1995 Feb;40(2):190–226. doi: 10.1007/BF00167113. [DOI] [PubMed] [Google Scholar]
- Marshall V. M., Coppel R. L., Martin R. K., Oduola A. M., Anders R. F., Kemp D. J. A Plasmodium falciparum MSA-2 gene apparently generated by intragenic recombination between the two allelic families. Mol Biochem Parasitol. 1991 Apr;45(2):349–351. doi: 10.1016/0166-6851(91)90104-e. [DOI] [PubMed] [Google Scholar]
- Marshall V. M., Peterson M. G., Lew A. M., Kemp D. J. Structure of the apical membrane antigen I (AMA-1) of Plasmodium chabaudi. Mol Biochem Parasitol. 1989 Dec;37(2):281–283. doi: 10.1016/0166-6851(89)90160-6. [DOI] [PubMed] [Google Scholar]
- Narum D. L., Thomas A. W. Differential localization of full-length and processed forms of PF83/AMA-1 an apical membrane antigen of Plasmodium falciparum merozoites. Mol Biochem Parasitol. 1994 Sep;67(1):59–68. doi: 10.1016/0166-6851(94)90096-5. [DOI] [PubMed] [Google Scholar]
- Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
- Nei M., Jin L. Variances of the average numbers of nucleotide substitutions within and between populations. Mol Biol Evol. 1989 May;6(3):290–300. doi: 10.1093/oxfordjournals.molbev.a040547. [DOI] [PubMed] [Google Scholar]
- Peterson M. G., Coppel R. L., McIntyre P., Langford C. J., Woodrow G., Brown G. V., Anders R. F., Kemp D. J. Variation in the precursor to the major merozoite surface antigens of Plasmodium falciparum. Mol Biochem Parasitol. 1988 Jan 15;27(2-3):291–301. doi: 10.1016/0166-6851(88)90049-7. [DOI] [PubMed] [Google Scholar]
- Peterson M. G., Marshall V. M., Smythe J. A., Crewther P. E., Lew A., Silva A., Anders R. F., Kemp D. J. Integral membrane protein located in the apical complex of Plasmodium falciparum. Mol Cell Biol. 1989 Jul;9(7):3151–3154. doi: 10.1128/mcb.9.7.3151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson M. G., Nguyen-Dinh P., Marshall V. M., Elliott J. F., Collins W. E., Anders R. F., Kemp D. J. Apical membrane antigen of Plasmodium fragile. Mol Biochem Parasitol. 1990 Mar;39(2):279–283. doi: 10.1016/0166-6851(90)90067-v. [DOI] [PubMed] [Google Scholar]
- Shiels B. R., d'Oliveira C., McKellar S., Ben-Miled L., Kawazu S., Hide G. Selection of diversity at putative glycosylation sites in the immunodominant merozoite/piroplasm surface antigen of Theileria parasites. Mol Biochem Parasitol. 1995 Jun;72(1-2):149–162. doi: 10.1016/0166-6851(95)00074-b. [DOI] [PubMed] [Google Scholar]
- Tanabe K., Mackay M., Goman M., Scaife J. G. Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. J Mol Biol. 1987 May 20;195(2):273–287. doi: 10.1016/0022-2836(87)90649-8. [DOI] [PubMed] [Google Scholar]
- Thomas A. W., Deans J. A., Mitchell G. H., Alderson T., Cohen S. The Fab fragments of monoclonal IgG to a merozoite surface antigen inhibit Plasmodium knowlesi invasion of erythrocytes. Mol Biochem Parasitol. 1984 Oct;13(2):187–199. doi: 10.1016/0166-6851(84)90112-9. [DOI] [PubMed] [Google Scholar]
- Thomas A. W., Waters A. P., Carr D. Analysis of variation in PF83, an erythrocytic merozoite vaccine candidate antigen of Plasmodium falciparum. Mol Biochem Parasitol. 1990 Sep-Oct;42(2):285–287. doi: 10.1016/0166-6851(90)90172-i. [DOI] [PubMed] [Google Scholar]
- Waters A. P., Thomas A. W., Deans J. A., Mitchell G. H., Hudson D. E., Miller L. H., McCutchan T. F., Cohen S. A merozoite receptor protein from Plasmodium knowlesi is highly conserved and distributed throughout Plasmodium. J Biol Chem. 1990 Oct 15;265(29):17974–17979. [PubMed] [Google Scholar]
- Waters A. P., Thomas A. W., Mitchell G. H., McCutchan T. F. Intra-generic conservation and limited inter-strain variation in a protective minor surface antigen of Plasmodium knowlesi merozoites. Mol Biochem Parasitol. 1991 Jan;44(1):141–144. doi: 10.1016/0166-6851(91)90230-4. [DOI] [PubMed] [Google Scholar]
- Wilson I. A., Cox N. J. Structural basis of immune recognition of influenza virus hemagglutinin. Annu Rev Immunol. 1990;8:737–771. doi: 10.1146/annurev.iy.08.040190.003513. [DOI] [PubMed] [Google Scholar]
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]