Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Aug;64(8):3318–3325. doi: 10.1128/iai.64.8.3318-3325.1996

Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor.

J W Greenberg 1, W Fischer 1, K A Joiner 1
PMCID: PMC174224  PMID: 8757870

Abstract

Lipoteichoic acids (LTAs) belong to the immunostimulatory class of molecules of gram-positive bacteria (GPB). Previous investigations showed that the macrophage scavenger receptor (SR), a glycosylated trimeric transmembrane protein, binds directly to many GPB, possibly via LTA. SR binding to other ligands is dependent upon the spatial characteristics of the repeating negative charge of the ligand. We therefore investigated SR recognition of LTA species with various charge densities and distributions by determining the capacity of these LTAs to compete with the binding of metabolically labeled SR to beads coated with the known SR ligand polyguanylic acid. Staphylococcus aureus LTA, a classical LTA type (unbranched 1,3-linked polyglycerophosphate chain covalently bound to a membrane diacylglyceroglycolipid), had a 50% inhibitory concentration (IC50) for inhibition of SR binding of 0.84 microg/ml. When the S. aureus LTA was rendered more negatively charged by removal of ester-linked alanine from the polyglycerophosphate backbone, the IC50 dropped to 0.23 microg/ml. Other polyglycerophosphate LTAs from Enterococcus faecalis, Enterococcus faecium, Enterococcus hirae, Listeria monocytogenes, Listeria welshimeri, and Streptococcus sanguis showed IC50S of 0.5 to 2.1 microg/ml, supporting the role of negative charge in binding to SR. Accordingly, the zwitterionic LTA of Streptococcus pneumoniae and Clostridium innocuum LTA substituted with positively charged sugar residues had no binding capacity. Monoglycerophosphate branches, but not succinyl ester, affected binding of lipoglycans. The data presented above parallel the previous findings for whole organisms and support the role of surface-associated LTA as a major ligand of GPB for binding to SR. Whether binding of LTA and whole GPB to macrophages initiates uptake and degradation or results in signal transduction remains to be determined.

Full Text

The Full Text of this article is available as a PDF (291.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acton S., Resnick D., Freeman M., Ekkel Y., Ashkenas J., Krieger M. The collagenous domains of macrophage scavenger receptors and complement component C1q mediate their similar, but not identical, binding specificities for polyanionic ligands. J Biol Chem. 1993 Feb 15;268(5):3530–3537. [PubMed] [Google Scholar]
  2. Behr T., Fischer W., Peter-Katalinić J., Egge H. The structure of pneumococcal lipoteichoic acid. Improved preparation, chemical and mass spectrometric studies. Eur J Biochem. 1992 Aug 1;207(3):1063–1075. doi: 10.1111/j.1432-1033.1992.tb17143.x. [DOI] [PubMed] [Google Scholar]
  3. Bhakdi S., Klonisch T., Nuber P., Fischer W. Stimulation of monokine production by lipoteichoic acids. Infect Immun. 1991 Dec;59(12):4614–4620. doi: 10.1128/iai.59.12.4614-4620.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bone R. C. Gram-positive organisms and sepsis. Arch Intern Med. 1994 Jan 10;154(1):26–34. [PubMed] [Google Scholar]
  5. Brown M. S., Goldstein J. L. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223–261. doi: 10.1146/annurev.bi.52.070183.001255. [DOI] [PubMed] [Google Scholar]
  6. Courtney H. S., Simpson W. A., Beachey E. H. Relationship of critical micelle concentrations of bacterial lipoteichoic acids to biological activities. Infect Immun. 1986 Feb;51(2):414–418. doi: 10.1128/iai.51.2.414-418.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dale J. B., Baird R. W., Courtney H. S., Hasty D. L., Bronze M. S. Passive protection of mice against group A streptococcal pharyngeal infection by lipoteichoic acid. J Infect Dis. 1994 Feb;169(2):319–323. doi: 10.1093/infdis/169.2.319. [DOI] [PubMed] [Google Scholar]
  8. Danforth J. M., Strieter R. M., Kunkel S. L., Arenberg D. A., VanOtteren G. M., Standiford T. J. Macrophage inflammatory protein-1 alpha expression in vivo and in vitro: the role of lipoteichoic acid. Clin Immunol Immunopathol. 1995 Jan;74(1):77–83. doi: 10.1006/clin.1995.1011. [DOI] [PubMed] [Google Scholar]
  9. De Kimpe S. J., Kengatharan M., Thiemermann C., Vane J. R. The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple organ failure. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10359–10363. doi: 10.1073/pnas.92.22.10359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dunne D. W., Resnick D., Greenberg J., Krieger M., Joiner K. A. The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1863–1867. doi: 10.1073/pnas.91.5.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fischer W. 'Lipoteichoic acid' of Bifidobacterium bifidum subspecies pennsylvanicum DSM 20239. A lipoglycan with monoglycerophosphate side chains. Eur J Biochem. 1987 Jun 15;165(3):639–646. doi: 10.1111/j.1432-1033.1987.tb11488.x. [DOI] [PubMed] [Google Scholar]
  12. Fischer W., Behr T., Hartmann R., Peter-Katalinić J., Egge H. Teichoic acid and lipoteichoic acid of Streptococcus pneumoniae possess identical chain structures. A reinvestigation of teichoid acid (C polysaccharide). Eur J Biochem. 1993 Aug 1;215(3):851–857. doi: 10.1111/j.1432-1033.1993.tb18102.x. [DOI] [PubMed] [Google Scholar]
  13. Fischer W., Koch H. U., Haas R. Improved preparation of lipoteichoic acids. Eur J Biochem. 1983 Jul 1;133(3):523–530. doi: 10.1111/j.1432-1033.1983.tb07495.x. [DOI] [PubMed] [Google Scholar]
  14. Fischer W., Koch H. U., Rösel P., Fiedler F. Alanine ester-containing native lipoteichoic acids do not act as lipoteichoic acid carrier. Isolation, structural and functional characterization. J Biol Chem. 1980 May 25;255(10):4557–4562. [PubMed] [Google Scholar]
  15. Fischer W., Mannsfeld T., Hagen G. On the basic structure of poly(glycerophosphate) lipoteichoic acids. Biochem Cell Biol. 1990 Jan;68(1):33–43. doi: 10.1139/o90-005. [DOI] [PubMed] [Google Scholar]
  16. Fischer W. One-step purification of bacterial lipid macroamphiphiles by hydrophobic interaction chromatography. Anal Biochem. 1991 May 1;194(2):353–358. doi: 10.1016/0003-2697(91)90240-t. [DOI] [PubMed] [Google Scholar]
  17. Garcia-Bustos J. F., Tomasz A. Teichoic acid-containing muropeptides from Streptococcus pneumoniae as substrates for the pneumococcal autolysin. J Bacteriol. 1987 Feb;169(2):447–453. doi: 10.1128/jb.169.2.447-453.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Heumann D., Barras C., Severin A., Glauser M. P., Tomasz A. Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infect Immun. 1994 Jul;62(7):2715–2721. doi: 10.1128/iai.62.7.2715-2721.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Himanen J. P., Pyhälä L., Olander R. M., Merimskaya O., Kuzina T., Lysyuk O., Pronin A., Sanin A., Helander I. M., Sarvas M. Biological activities of lipoteichoic acid and peptidoglycan-teichoic acid of Bacillus subtilis 168 (Marburg). J Gen Microbiol. 1993 Nov;139(11):2659–2665. doi: 10.1099/00221287-139-11-2659. [DOI] [PubMed] [Google Scholar]
  20. Hunter S. W., Gaylord H., Brennan P. J. Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. J Biol Chem. 1986 Sep 15;261(26):12345–12351. [PubMed] [Google Scholar]
  21. Keller R., Fischer W., Keist R., Bassetti S. Macrophage response to bacteria: induction of marked secretory and cellular activities by lipoteichoic acids. Infect Immun. 1992 Sep;60(9):3664–3672. doi: 10.1128/iai.60.9.3664-3672.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Klein R. A., Hartmann R., Egge H., Behr T., Fischer W. The aqueous solution structure of a lipoteichoic acid from Streptococcus pneumoniae strain R6 containing 2,4-diamino-2,4,6-trideoxy-galactose: evidence for conformational mobility of the galactopyranose ring. Carbohydr Res. 1996 Feb 7;281(1):79–98. doi: 10.1016/0008-6215(95)00336-3. [DOI] [PubMed] [Google Scholar]
  23. Klein R. A., Hartmann R., Egge H., Behr T., Fischer W. The aqueous solution structure of the tetrasaccharide-ribitol repeat-unit from the lipoteichoic acid of Streptococcus pneumoniae strain R6 determined using a combination of NMR spectroscopy and computer calculations. Carbohydr Res. 1994 Apr 1;256(2):189–222. doi: 10.1016/0008-6215(94)84209-4. [DOI] [PubMed] [Google Scholar]
  24. Koch H. U., Fischer W. Acyldiglucosyldiacylglycerol-containing lipoteichoic acid with a poly(3-O-galabiosyl-2-O-galactosyl-sn-glycero-1-phosphate) chain from Streptococcus lactis Kiel 42172. Biochemistry. 1978 Nov 28;17(24):5275–5281. doi: 10.1021/bi00617a030. [DOI] [PubMed] [Google Scholar]
  25. Labischinski H., Naumann D., Fischer W. Small and medium-angle X-ray analysis of bacterial lipoteichoic acid phase structure. Eur J Biochem. 1991 Dec 18;202(3):1269–1274. doi: 10.1111/j.1432-1033.1991.tb16499.x. [DOI] [PubMed] [Google Scholar]
  26. Loos M., Clas F., Fischer W. Interaction of purified lipoteichoic acid with the classical complement pathway. Infect Immun. 1986 Sep;53(3):595–599. doi: 10.1128/iai.53.3.595-599.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Monefeldt K., Helgeland K., Tollefsen T. In vitro activation of the classical pathway of complement by a streptococcal lipoteichoic acid. Oral Microbiol Immunol. 1994 Apr;9(2):70–76. doi: 10.1111/j.1399-302x.1994.tb00037.x. [DOI] [PubMed] [Google Scholar]
  28. Pearson A. M., Rich A., Krieger M. Polynucleotide binding to macrophage scavenger receptors depends on the formation of base-quartet-stabilized four-stranded helices. J Biol Chem. 1993 Feb 15;268(5):3546–3554. [PubMed] [Google Scholar]
  29. Polotsky V. Y., Fischer W., Ezekowitz R. A., Joiner K. A. Interactions of human mannose-binding protein with lipoteichoic acids. Infect Immun. 1996 Jan;64(1):380–383. doi: 10.1128/iai.64.1.380-383.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Powell D. A., Duckworth M., Baddiley J. A membrane-associated lipomannan in micrococci. Biochem J. 1975 Nov;151(2):387–397. doi: 10.1042/bj1510387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pugin J., Heumann I. D., Tomasz A., Kravchenko V. V., Akamatsu Y., Nishijima M., Glauser M. P., Tobias P. S., Ulevitch R. J. CD14 is a pattern recognition receptor. Immunity. 1994 Sep;1(6):509–516. doi: 10.1016/1074-7613(94)90093-0. [DOI] [PubMed] [Google Scholar]
  32. Resnick D., Freedman N. J., Xu S., Krieger M. Secreted extracellular domains of macrophage scavenger receptors form elongated trimers which specifically bind crocidolite asbestos. J Biol Chem. 1993 Feb 15;268(5):3538–3545. [PubMed] [Google Scholar]
  33. Standiford T. J., Arenberg D. A., Danforth J. M., Kunkel S. L., VanOtteren G. M., Strieter R. M. Lipoteichoic acid induces secretion of interleukin-8 from human blood monocytes: a cellular and molecular analysis. Infect Immun. 1994 Jan;62(1):119–125. doi: 10.1128/iai.62.1.119-125.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Takada H., Kawabata Y., Arakaki R., Kusumoto S., Fukase K., Suda Y., Yoshimura T., Kokeguchi S., Kato K., Komuro T. Molecular and structural requirements of a lipoteichoic acid from Enterococcus hirae ATCC 9790 for cytokine-inducing, antitumor, and antigenic activities. Infect Immun. 1995 Jan;63(1):57–65. doi: 10.1128/iai.63.1.57-65.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weidemann B., Brade H., Rietschel E. T., Dziarski R., Bazil V., Kusumoto S., Flad H. D., Ulmer A. J. Soluble peptidoglycan-induced monokine production can be blocked by anti-CD14 monoclonal antibodies and by lipid A partial structures. Infect Immun. 1994 Nov;62(11):4709–4715. doi: 10.1128/iai.62.11.4709-4715.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wicken A. J., Evans J. D., Knox K. W. Critical micelle concentrations of lipoteichoic acids. J Bacteriol. 1986 Apr;166(1):72–77. doi: 10.1128/jb.166.1.72-77.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES