Abstract
Cu,Zn superoxide dismutases (SODs) have been purified to homogeneity from Aspergillus flavus and A. niger, which are significant causative agents of aspergillosis, and from A. nidulans and A. terreus, which are much rarer causative agents of disease, using a combination of isoelectric focusing and gel filtration fast protein liquid chromatography. The purified enzymes have been compared with the previously described SOD from the most important pathogen in the genus, A. fumigatus (M. D. Holdom, R. J. Hay, and A. J. Hamilton, Free Radical Res. 22:519-531, 1995). The N-terminal amino acid sequences of the four newly purified enzymes were almost identical and demonstrated homology to known Cu,Zn SODs from a range of organisms including that from the previously described SOD from A. fumigatus. SOD activity was detectable in the culture filtrates of all species, and intracellular Cu,Zn SOD activity as a proportion of total protein was highest in early-log-phase cultures. The specific activities of the purified enzymes were similar, and all four of the newly described enzymes were inhibited by potassium cyanide and diethyldithiocarbamate, known Cu,Zn SOD inhibitors. Sodium azide and o-phenanthroline demonstrated inhibition at concentrations from 5 to 30 mM, and EDTA also exhibited a varying degree of inhibition of SOD activity. However, there were differences in the nonreduced molecular masses, the reduced molecular masses, and the isoelectric points of the four newly described SODs and the A. fumigatus enzyme; these varied from 55 to 123 kDa, 17.5 to 19.5 kDa, and 5.0 to 5.9, respectively. Of particular note was the observation that the A. fumigatus enzyme was thermostable compared with the SODs from the other species; in addition, the A.fiumigatus enzyme retained all of its activity at 37 degrees C relative to 20 degrees C, whereas the SODs of A. nidulans and A. terreus lost significant activity at the higher temperature. Aspergillus Cu,Zn SOD plays a hypothetical role in the avoidance of oxidative killing mechanisms, and our data suggest that the thermotolerant A. fumigatus Cu,Zn SOD would be more effective in such a protective system than, for example, the equivalent enzyme from the more rarely pathogenic A. nidulans.
Full Text
The Full Text of this article is available as a PDF (345.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asada K., Yoshikawa K., Takahashi M., Maeda Y., Enmanji K. Superoxide dismutases from a blue-green alga, Plectonema boryanum. J Biol Chem. 1975 Apr 25;250(8):2801–2807. [PubMed] [Google Scholar]
- Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
- Bujak J. S., Kwon-Chung K. J., Chusid M. J. Osteomyelitis and pneumonia in a boy with chronic granulomatous disease of childhood caused by a mutant strain of Aspergillus nidulans. Am J Clin Pathol. 1974 Mar;61(3):361–367. doi: 10.1093/ajcp/61.3.361. [DOI] [PubMed] [Google Scholar]
- Callahan H. L., Crouch R. K., James E. R. Dirofilaria immitis superoxide dismutase: purification and characterization. Mol Biochem Parasitol. 1991 Dec;49(2):245–251. doi: 10.1016/0166-6851(91)90068-h. [DOI] [PubMed] [Google Scholar]
- DeGregorio M. W., Lee W. M., Linker C. A., Jacobs R. A., Ries C. A. Fungal infections in patients with acute leukemia. Am J Med. 1982 Oct;73(4):543–548. doi: 10.1016/0002-9343(82)90334-5. [DOI] [PubMed] [Google Scholar]
- Diamond R. D., Clark R. A. Damage to Aspergillus fumigatus and Rhizopus oryzae hyphae by oxidative and nonoxidative microbicidal products of human neutrophils in vitro. Infect Immun. 1982 Nov;38(2):487–495. doi: 10.1128/iai.38.2.487-495.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eichner R. D., Al Salami M., Wood P. R., Müllbacher A. The effect of gliotoxin upon macrophage function. Int J Immunopharmacol. 1986;8(7):789–797. doi: 10.1016/0192-0561(86)90016-0. [DOI] [PubMed] [Google Scholar]
- Fowler T., Rey M. W., Vähä-Vahe P., Power S. D., Berka R. M. The catR gene encoding a catalase from Aspergillus niger: primary structure and elevated expression through increased gene copy number and use of a strong promoter. Mol Microbiol. 1993 Sep;9(5):989–998. doi: 10.1111/j.1365-2958.1993.tb01228.x. [DOI] [PubMed] [Google Scholar]
- Hamilton A. J., Bartholomew M. A., Fenelon L. E., Figueroa J., Hay R. J. A murine monoclonal antibody exhibiting high species specificity for Histoplasma capsulatum var. capsulatum. J Gen Microbiol. 1990 Feb;136(2):331–335. doi: 10.1099/00221287-136-2-331. [DOI] [PubMed] [Google Scholar]
- Hamilton A. J., Goodley J. Purification of the 115-kilodalton exoantigen of Cryptococcus neoformans and its recognition by immune sera. J Clin Microbiol. 1993 Feb;31(2):335–339. doi: 10.1128/jcm.31.2.335-339.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamilton A. J., Holdom M. D., Hay R. J. Specific recognition of purified Cu,Zn superoxide dismutase from Aspergillus fumigatus by immune human sera. J Clin Microbiol. 1995 Feb;33(2):495–496. doi: 10.1128/jcm.33.2.495-496.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamilton A. J., Jeavons L., Hobby P., Hay R. J. A 34- to 38-kilodalton Cryptococcus neoformans glycoprotein produced as an exoantigen bearing a glycosylated species-specific epitope. Infect Immun. 1992 Jan;60(1):143–149. doi: 10.1128/iai.60.1.143-149.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hearn V. M., Wilson E. V., Mackenzie D. W. Analysis of Aspergillus fumigatus catalases possessing antigenic activity. J Med Microbiol. 1992 Jan;36(1):61–67. doi: 10.1099/00222615-36-1-61. [DOI] [PubMed] [Google Scholar]
- Holdom M. D., Hay R. J., Hamilton A. J. Purification, N-terminal amino acid sequence and partial characterization of a Cu,Zn superoxide dismutase from the pathogenic fungus Aspergillus fumigatus. Free Radic Res. 1995 Jun;22(6):519–531. doi: 10.3109/10715769509150324. [DOI] [PubMed] [Google Scholar]
- King R. D., Lee J. C., Morris A. L. Adherence of Candida albicans and other Candida species to mucosal epithelial cells. Infect Immun. 1980 Feb;27(2):667–674. doi: 10.1128/iai.27.2.667-674.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolattukudy P. E., Lee J. D., Rogers L. M., Zimmerman P., Ceselski S., Fox B., Stein B., Copelan E. A. Evidence for possible involvement of an elastolytic serine protease in aspergillosis. Infect Immun. 1993 Jun;61(6):2357–2368. doi: 10.1128/iai.61.6.2357-2368.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore C. K., Hellreich M. A., Coblentz C. L., Roggli V. L. Aspergillus terreus as a cause of invasive pulmonary aspergillosis. Chest. 1988 Oct;94(4):889–891. doi: 10.1378/chest.94.4.889. [DOI] [PubMed] [Google Scholar]
- Müllbacher A., Waring P., Eichner R. D. Identification of an agent in cultures of Aspergillus fumigatus displaying anti-phagocytic and immunomodulating activity in vitro. J Gen Microbiol. 1985 May;131(5):1251–1258. doi: 10.1099/00221287-131-5-1251. [DOI] [PubMed] [Google Scholar]
- Read S. M., Northcote D. H. Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Anal Biochem. 1981 Sep 1;116(1):53–64. doi: 10.1016/0003-2697(81)90321-3. [DOI] [PubMed] [Google Scholar]
- Rex J. H., Bennett J. E., Gallin J. I., Malech H. L., Melnick D. A. Normal and deficient neutrophils can cooperate to damage Aspergillus fumigatus hyphae. J Infect Dis. 1990 Aug;162(2):523–528. doi: 10.1093/infdis/162.2.523. [DOI] [PubMed] [Google Scholar]
- Rhodes J. C., Polacheck I., Kwon-Chung K. J. Phenoloxidase activity and virulence in isogenic strains of Cryptococcus neoformans. Infect Immun. 1982 Jun;36(3):1175–1184. doi: 10.1128/iai.36.3.1175-1184.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rotstein C., Cummings K. M., Tidings J., Killion K., Powell E., Gustafson T. L., Higby D. An outbreak of invasive aspergillosis among allogeneic bone marrow transplants: a case-control study. Infect Control. 1985 Sep;6(9):347–355. doi: 10.1017/s019594170006330x. [DOI] [PubMed] [Google Scholar]
- Schininà M. E., Bossa F., Lania A., Capo C. R., Carlini P., Calabrese L. The primary structure of turtle Cu,Zn superoxide dismutase. Structural and functional irrelevance of an insert conferring proteolytic susceptibility. Eur J Biochem. 1993 Feb 1;211(3):843–849. doi: 10.1111/j.1432-1033.1993.tb17617.x. [DOI] [PubMed] [Google Scholar]
- Schønheyder H., Storgaard L., Andersen P. Variation of a 470 000 daltons antigen complex and catalase antigen in clinical isolates of Aspergillus fumigatus. Sabouraudia. 1985 Oct;23(5):339–349. doi: 10.1080/00362178585380501. [DOI] [PubMed] [Google Scholar]
- Tang C. M., Cohen J., Holden D. W. An Aspergillus fumigatus alkaline protease mutant constructed by gene disruption is deficient in extracellular elastase activity. Mol Microbiol. 1992 Jun;6(12):1663–1671. doi: 10.1111/j.1365-2958.1992.tb00891.x. [DOI] [PubMed] [Google Scholar]
- Waldorf A. R. Pulmonary defense mechanisms against opportunistic fungal pathogens. Immunol Ser. 1989;47:243–271. [PubMed] [Google Scholar]
- Washburn R. G., DeHart D. J., Agwu D. E., Bryant-Varela B. J., Julian N. C. Aspergillus fumigatus complement inhibitor: production, characterization, and purification by hydrophobic interaction and thin-layer chromatography. Infect Immun. 1990 Nov;58(11):3508–3515. doi: 10.1128/iai.58.11.3508-3515.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Washburn R. G., Hammer C. H., Bennett J. E. Inhibition of complement by culture supernatants of Aspergillus fumigatus. J Infect Dis. 1986 Dec;154(6):944–951. doi: 10.1093/infdis/154.6.944. [DOI] [PubMed] [Google Scholar]