Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Aug;64(8):3341–3350. doi: 10.1128/iai.64.8.3341-3350.1996

Babesia bovis rhoptry-associated protein 1 is immunodominant for T helper cells of immune cattle and contains T-cell epitopes conserved among geographically distant B. bovis strains.

W C Brown 1, T F McElwain 1, B J Ruef 1, C E Suarez 1, V Shkap 1, C G Chitko-McKown 1, W Tuo 1, A C Rice-Ficht 1, G H Palmer 1
PMCID: PMC174227  PMID: 8757873

Abstract

The ability of rhoptry-associated protein 1 (RAP-1) of Babesia bovis and Babesia bigemina to confer partial protective immunity in cattle has stimulated interest in characterizing both B-cell and T-cell epitopes of these proteins. It was previously shown that B. bovis RAP-1 associates with the merozoite surface as well as rhoptries and expresses B-cell epitopes conserved among otherwise antigenically different B. bovis strains. An amino-terminal 307-amino-acid domain of the molecule that is highly conserved in the B. bigemina RAP-1 homolog did not contain cross-reactive B-cell epitopes. The studies reported here demonstrate that B. bovis RAP-1 is strongly immunogenic for T helper (Th) cells from B. bovis-immune cattle and that like B-cell epitopes, Th-cell epitopes are conserved in different B. bovis strains but not in B. bigemina RAP-1. Lymphocytes from cattle immune to challenge with the Mexico strain of B. bovis proliferated against recombinant B. bovis RAP-1 protein derived from the Mexico strain. T-cell lines established by stimulating lymphocytes with recombinant RAP-1 protein responded against B. bovis, but not B. bigemina, merozoites. T-cell lines established by repeated stimulation of lymphocytes with B. bovis membrane antigen proliferated strongly against RAP-1, demonstrating the immunodominant nature of this protein. RAP-1-specific CD4+ T cell clones recognized Mexico, Texas, Australia, and Israel strains of B. bovis but neither B. bigemina merozoites nor recombinant B. bigemina RAP- 1. Analysis of cytokine mRNA in RAP-1-specific Th cell clones revealed strong expression of gamma interferon but little or no expression of interleukin-2 (IL-2), IL-4, or IL-10. Gamma interferon production was confirmed by enzyme-linked imunosorbent assay. These results indicate the potential to use selected B. bovis RAP-1 peptides as immunogens to prime for strong, anamnestic, strain-cross-reactive type 1 immune responses upon exposure to B. bovis.

Full Text

The Full Text of this article is available as a PDF (384.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloom B. R., Salgame P., Diamond B. Revisiting and revising suppressor T cells. Immunol Today. 1992 Apr;13(4):131–136. doi: 10.1016/0167-5699(92)90110-S. [DOI] [PubMed] [Google Scholar]
  2. Brown W. C., Davis W. C., Choi S. H., Dobbelaere D. A., Splitter G. A. Functional and phenotypic characterization of WC1+ gamma/delta T cells isolated from Babesia bovis-stimulated T cell lines. Cell Immunol. 1994 Jan;153(1):9–27. doi: 10.1006/cimm.1994.1002. [DOI] [PubMed] [Google Scholar]
  3. Brown W. C., Logan K. S. Babesia bovis: bovine helper T cell lines reactive with soluble and membrane antigens of merozoites. Exp Parasitol. 1992 Mar;74(2):188–199. doi: 10.1016/0014-4894(92)90046-d. [DOI] [PubMed] [Google Scholar]
  4. Brown W. C., Logan K. S., Wagner G. G., Tetzlaff C. L. Cell-mediated immune responses to Babesia bovis merozoite antigens in cattle following infection with tick-derived or cultured parasites. Infect Immun. 1991 Jul;59(7):2418–2426. doi: 10.1128/iai.59.7.2418-2426.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown W. C., Logan K. S., Zhao S., Bergman D. K., Rice-Ficht A. C. Identification of Babesia bovis merozoite antigens separated by continuous-flow electrophoresis that stimulate proliferation of helper T-cell clones derived from B. bovis-immune cattle. Infect Immun. 1995 Aug;63(8):3106–3116. doi: 10.1128/iai.63.8.3106-3116.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown W. C., Palmer G. H., McElwain T. F., Hines S. A., Dobbelaere D. A. Babesia bovis: characterization of the T helper cell response against the 42-kDa merozoite surface antigen (MSA-1) in cattle. Exp Parasitol. 1993 Aug;77(1):97–110. doi: 10.1006/expr.1993.1065. [DOI] [PubMed] [Google Scholar]
  7. Brown W. C., Rice-Ficht A. C. Use of helper T cells to identify potential vaccine antigens of Babesia bovis. Parasitol Today. 1994 Apr;10(4):145–149. doi: 10.1016/0169-4758(94)90265-8. [DOI] [PubMed] [Google Scholar]
  8. Brown W. C., Woods V. M., Dobbelaere D. A., Logan K. S. Heterogeneity in cytokine profiles of Babesia bovis-specific bovine CD4+ T cells clones activated in vitro. Infect Immun. 1993 Aug;61(8):3273–3281. doi: 10.1128/iai.61.8.3273-3281.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brown W. C., Zhao S., Rice-Ficht A. C., Logan K. S., Woods V. M. Bovine helper T cell clones recognize five distinct epitopes on Babesia bovis merozoite antigens. Infect Immun. 1992 Oct;60(10):4364–4372. doi: 10.1128/iai.60.10.4364-4372.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brown W. C., Zhao S., Woods V. M., Tripp C. A., Tetzlaff C. L., Heussler V. T., Dobbelaere D. A., Rice-Ficht A. C. Identification of two Th1 cell epitopes on the Babesia bovis-encoded 77-kilodalton merozoite protein (Bb-1) by use of truncated recombinant fusion proteins. Infect Immun. 1993 Jan;61(1):236–244. doi: 10.1128/iai.61.1.236-244.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cerretti D. P., McKereghan K., Larsen A., Cantrell M. A., Anderson D., Gillis S., Cosman D., Baker P. E. Cloning, sequence, and expression of bovine interleukin 2. Proc Natl Acad Sci U S A. 1986 May;83(10):3223–3227. doi: 10.1073/pnas.83.10.3223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cerretti D. P., McKereghan K., Larsen A., Cosman D., Gillis S., Baker P. E. Cloning, sequence, and expression of bovine interferon-gamma. J Immunol. 1986 Jun 15;136(12):4561–4564. [PubMed] [Google Scholar]
  13. Chitko-McKown C. G., Ruef B. J., Rice-Ficht A. C., Brown W. C. Interleukin-10 downregulates proliferation and expression of interleukin-2 receptor p55 chain and interferon-gamma, but not interleukin-2 or interleukin-4, by parasite-specific helper T cell clones obtained from cattle chronically infected with Babesia bovis or Fasciola hepatica. J Interferon Cytokine Res. 1995 Oct;15(10):915–922. doi: 10.1089/jir.1995.15.915. [DOI] [PubMed] [Google Scholar]
  14. Commins M. A., Goodger B. V., Wright I. G. Proteinases in the lysate of bovine erythrocytes infected with Babesia bovis: initial vaccination studies. Int J Parasitol. 1985 Oct;15(5):491–495. doi: 10.1016/0020-7519(85)90042-6. [DOI] [PubMed] [Google Scholar]
  15. Dalrymple B. P., Casu R. E., Peters J. M., Dimmock C. M., Gale K. R., Boese R., Wright I. G. Characterisation of a family of multi-copy genes encoding rhoptry protein homologues in Babesia bovis, Babesia ovis and Babesia canis. Mol Biochem Parasitol. 1993 Feb;57(2):181–192. doi: 10.1016/0166-6851(93)90194-3. [DOI] [PubMed] [Google Scholar]
  16. Dalrymple B. P. Diversity and selection in Babesia bovis and their impact on vaccine use. Parasitol Today. 1992 Jan;8(1):21–23. doi: 10.1016/0169-4758(92)90306-m. [DOI] [PubMed] [Google Scholar]
  17. Dalrymple B. P. Molecular variation and diversity in candidate vaccine antigens from Babesia. Acta Trop. 1993 May;53(3-4):227–238. doi: 10.1016/0001-706x(93)90031-6. [DOI] [PubMed] [Google Scholar]
  18. Degen J. L., Neubauer M. G., Degen S. J., Seyfried C. E., Morris D. R. Regulation of protein synthesis in mitogen-activated bovine lymphocytes. Analysis of actin-specific and total mRNA accumulation and utilization. J Biol Chem. 1983 Oct 25;258(20):12153–12162. [PubMed] [Google Scholar]
  19. Evavold B. D., Sloan-Lancaster J., Allen P. M. Tickling the TCR: selective T-cell functions stimulated by altered peptide ligands. Immunol Today. 1993 Dec;14(12):602–609. doi: 10.1016/0167-5699(93)90200-5. [DOI] [PubMed] [Google Scholar]
  20. Goff W. L., Davis W. C., Palmer G. H., McElwain T. F., Johnson W. C., Bailey J. F., McGuire T. C. Identification of Babesia bovis merozoite surface antigens by using immune bovine sera and monoclonal antibodies. Infect Immun. 1988 Sep;56(9):2363–2368. doi: 10.1128/iai.56.9.2363-2368.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Good M. F., Miller L. H. T-cell antigens and epitopes in malaria vaccine design. Curr Top Microbiol Immunol. 1990;155:65–78. doi: 10.1007/978-3-642-74983-4_5. [DOI] [PubMed] [Google Scholar]
  22. Hash S. M., Brown W. C., Rice-Ficht A. C. Characterization of a cDNA encoding bovine interleukin 10: kinetics of expression in bovine lymphocytes. Gene. 1994 Feb 25;139(2):257–261. doi: 10.1016/0378-1119(94)90766-8. [DOI] [PubMed] [Google Scholar]
  23. Heussler V. T., Eichhorn M., Dobbelaere D. A. Cloning of a full-length cDNA encoding bovine interleukin 4 by the polymerase chain reaction. Gene. 1992 May 15;114(2):273–278. doi: 10.1016/0378-1119(92)90587-f. [DOI] [PubMed] [Google Scholar]
  24. Hines S. A., Palmer G. H., Brown W. C., McElwain T. F., Suarez C. E., Vidotto O., Rice-Ficht A. C. Genetic and antigenic characterization of Babesia bovis merozoite spherical body protein Bb-1. Mol Biochem Parasitol. 1995 Feb;69(2):149–159. doi: 10.1016/0166-6851(94)00200-7. [DOI] [PubMed] [Google Scholar]
  25. Howard R. J., Pasloske B. L. Target antigens for asexual malaria vaccine development. Parasitol Today. 1993 Oct;9(10):369–372. doi: 10.1016/0169-4758(93)90085-t. [DOI] [PubMed] [Google Scholar]
  26. Jasmer D. P., Reduker D. W., Perryman L. E., McGuire T. C. A Babesia bovis 225-kilodalton protein located on the cytoplasmic side of the erythrocyte membrane has sequence similarity with a region of glycogen phosphorylase. Mol Biochem Parasitol. 1992 Jun;52(2):263–269. doi: 10.1016/0166-6851(92)90058-r. [DOI] [PubMed] [Google Scholar]
  27. Kumaratilake L. M., Ferrante A., Rzepczyk C. The role of T lymphocytes in immunity to Plasmodium falciparum. Enhancement of neutrophil-mediated parasite killing by lymphotoxin and IFN-gamma: comparisons with tumor necrosis factor effects. J Immunol. 1991 Jan 15;146(2):762–767. [PubMed] [Google Scholar]
  28. Madruga C. R., Suarez C. E., McElwain T. F., Palmer G. H. Conservation of merozoite membrane and apical complex B cell epitopes among Babesia bigemina and Babesia bovis strains isolated in Brazil. Vet Parasitol. 1996 Jan;61(1-2):21–30. doi: 10.1016/0304-4017(95)00809-8. [DOI] [PubMed] [Google Scholar]
  29. McElwain T. F., Perryman L. E., Musoke A. J., McGuire T. C. Molecular characterization and immunogenicity of neutralization-sensitive Babesia bigemina merozoite surface proteins. Mol Biochem Parasitol. 1991 Aug;47(2):213–222. doi: 10.1016/0166-6851(91)90181-5. [DOI] [PubMed] [Google Scholar]
  30. Miller L. H., Good M. F., Milon G. Malaria pathogenesis. Science. 1994 Jun 24;264(5167):1878–1883. doi: 10.1126/science.8009217. [DOI] [PubMed] [Google Scholar]
  31. Mishra V. S., McElwain T. F., Dame J. B., Stephens E. B. Isolation, sequence and differential expression of the p58 gene family of Babesia bigemina. Mol Biochem Parasitol. 1992 Jul;53(1-2):149–158. doi: 10.1016/0166-6851(92)90017-e. [DOI] [PubMed] [Google Scholar]
  32. Mishra V. S., Stephens E. B., Dame J. B., Perryman L. E., McGuire T. C., McElwain T. F. Immunogenicity and sequence analysis of recombinant p58: a neutralization-sensitive, antigenically conserved Babesia bigemina merozoite surface protein. Mol Biochem Parasitol. 1991 Aug;47(2):207–212. doi: 10.1016/0166-6851(91)90180-e. [DOI] [PubMed] [Google Scholar]
  33. Palmer G. H., McElwain T. F. Molecular basis for vaccine development against anaplasmosis and babesiosis. Vet Parasitol. 1995 Mar;57(1-3):233–253. doi: 10.1016/0304-4017(94)03123-e. [DOI] [PubMed] [Google Scholar]
  34. Palmer G. H., McElwain T. F., Perryman L. E., Davis W. C., Reduker D. R., Jasmer D. P., Shkap V., Pipano E., Goff W. L., McGuire T. C. Strain variation of Babesia bovis merozoite surface-exposed epitopes. Infect Immun. 1991 Sep;59(9):3340–3342. doi: 10.1128/iai.59.9.3340-3342.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Perkins M. E. Rhoptry organelles of apicomplexan parasites. Parasitol Today. 1992 Jan;8(1):28–32. doi: 10.1016/0169-4758(92)90308-o. [DOI] [PubMed] [Google Scholar]
  36. Ridley R. G., Takacs B., Etlinger H., Scaife J. G. A rhoptry antigen of Plasmodium falciparum is protective in Saimiri monkeys. Parasitology. 1990 Oct;101(Pt 2):187–192. doi: 10.1017/s0031182000063228. [DOI] [PubMed] [Google Scholar]
  37. Rodríguez S. D., Palmer G. H., McElwain T. F., McGuire T. C., Ruef B. J., Chitko-McKown M. G., Brown W. C. CD4+ T-helper lymphocyte responses against Babesia bigemina rhoptry-associated protein I. Infect Immun. 1996 Jun;64(6):2079–2087. doi: 10.1128/iai.64.6.2079-2087.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schetters T. P., Montenegro-James S. Vaccines against babesiosis using soluble parasite antigens. Parasitol Today. 1995 Dec;11(12):456–462. doi: 10.1016/0169-4758(95)80059-x. [DOI] [PubMed] [Google Scholar]
  39. Sedegah M., Finkelman F., Hoffman S. L. Interleukin 12 induction of interferon gamma-dependent protection against malaria. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10700–10702. doi: 10.1073/pnas.91.22.10700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Siddiqui W. A., Tam L. Q., Kramer K. J., Hui G. S., Case S. E., Yamaga K. M., Chang S. P., Chan E. B., Kan S. C. Merozoite surface coat precursor protein completely protects Aotus monkeys against Plasmodium falciparum malaria. Proc Natl Acad Sci U S A. 1987 May;84(9):3014–3018. doi: 10.1073/pnas.84.9.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Suarez C. E., McElwain T. F., Echaide I., Torioni de Echaide S., Palmer G. H. Interstrain conservation of babesial RAP-1 surface-exposed B-cell epitopes despite rap-1 genomic polymorphism. Infect Immun. 1994 Aug;62(8):3576–3579. doi: 10.1128/iai.62.8.3576-3579.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Suarez C. E., McElwain T. F., Stephens E. B., Mishra V. S., Palmer G. H. Sequence conservation among merozoite apical complex proteins of Babesia bovis, Babesia bigemina and other apicomplexa. Mol Biochem Parasitol. 1991 Dec;49(2):329–332. doi: 10.1016/0166-6851(91)90077-j. [DOI] [PubMed] [Google Scholar]
  43. Suarez C. E., Palmer G. H., Hines S. A., McElwain T. F. Immunogenic B-cell epitopes of Babesia bovis rhoptry-associated protein 1 are distinct from sequences conserved between species. Infect Immun. 1993 Aug;61(8):3511–3517. doi: 10.1128/iai.61.8.3511-3517.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Suarez C. E., Palmer G. H., Jasmer D. P., Hines S. A., Perryman L. E., McElwain T. F. Characterization of the gene encoding a 60-kilodalton Babesia bovis merozoite protein with conserved and surface exposed epitopes. Mol Biochem Parasitol. 1991 May;46(1):45–52. doi: 10.1016/0166-6851(91)90197-e. [DOI] [PubMed] [Google Scholar]
  45. Taylor-Robinson A. W., Liew F. Y., Severn A., Xu D., McSorley S. J., Garside P., Padron J., Phillips R. S. Regulation of the immune response by nitric oxide differentially produced by T helper type 1 and T helper type 2 cells. Eur J Immunol. 1994 Apr;24(4):980–984. doi: 10.1002/eji.1830240430. [DOI] [PubMed] [Google Scholar]
  46. Taylor-Robinson A. W. Regulation of immunity to malaria: valuable lessons learned from murine models. Parasitol Today. 1995 Sep;11(9):334–342. doi: 10.1016/0169-4758(95)80186-3. [DOI] [PubMed] [Google Scholar]
  47. Tetzlaff C. L., Rice-Ficht A. C., Woods V. M., Brown W. C. Induction of proliferative responses of T cells from Babesia bovis-immune cattle with a recombinant 77-kilodalton merozoite protein (Bb-1). Infect Immun. 1992 Feb;60(2):644–652. doi: 10.1128/iai.60.2.644-652.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tripp C. A., Wagner G. G., Rice-Ficht A. C. Babesia bovis: gene isolation and characterization using a mung bean nuclease-derived expression library. Exp Parasitol. 1989 Oct;69(3):211–225. doi: 10.1016/0014-4894(89)90068-4. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES