Abstract
The mechanisms by which mammalian hosts eliminate microparasites such as bacteria and viruses are well established. In viral infections, these mechanisms include the interferons, neutralizing and opsonizing antibodies, and cytotoxic T lymphocytes. In bacterial infections, polymorphonuclear leukocytes and macrophages, often facilitated by opsonizing antibodies, ingest the infectious agent and mediate host defense. In addition, complement, in the presence of specific antibodies directed against surface antigens, can lyse certain bacterial pathogens. In contrast, our understanding of the host defenses against metazoan, extracellular parasites is less well grounded. We obtained data by two different approaches to document the role of nitric oxide (NO) as a mediator of host defense against a human nematode parasite. First, treatment of immunocompetent, nonpermissive mice with an inhibitor of NO synthase abrogated resistance to Brugia malayi, one of the causative agents of human lymphatic filariasis. Second, treatment of permissive, immunodeficient mice with a compound that releases NO conferred resistance to infection. These data reinforce studies by James and her coworkers (I. P. Oswald, T. A. Wynn, A. Sher, and S. L. James, Comp. Biochem. Physiol. Pharmacol. Toxicol. Endocrinol. 108:11-18, 1994) on the role of NO in defense against trematode parasites and of Kanazawa et al. (T. Kanazawa, H. Asahi, H. Hata; K. Machida, N. Kagei, and M. J. Stadecker, Parasite Immunol. 15: 619-623, 1993) on cestode parasites.
Full Text
The Full Text of this article is available as a PDF (160.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albina J. E. On the expression of nitric oxide synthase by human macrophages. Why no NO? J Leukoc Biol. 1995 Dec;58(6):643–649. doi: 10.1002/jlb.58.6.643. [DOI] [PubMed] [Google Scholar]
- Albina J. E., Reichner J. S. Nitric oxide in inflammation and immunity. New Horiz. 1995 Feb;3(1):46–64. [PubMed] [Google Scholar]
- Brzozowski T., Drozdowicz D., Majka J., Polonczyk-Pytko J., Konturek S. J. Role of polyamines in gastroprotection induced by epidermal growth factor. J Physiol Pharmacol. 1991 Jun;42(2):181–193. [PubMed] [Google Scholar]
- Carlow C. K., Philipp M. Protective immunity to Brugia malayi larvae in BALB/c mice: potential of this model for the identification of protective antigens. Am J Trop Med Hyg. 1987 Nov;37(3):597–604. doi: 10.4269/ajtmh.1987.37.597. [DOI] [PubMed] [Google Scholar]
- Corbett J. A., Tilton R. G., Chang K., Hasan K. S., Ido Y., Wang J. L., Sweetland M. A., Lancaster J. R., Jr, Williamson J. R., McDaniel M. L. Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes. 1992 Apr;41(4):552–556. doi: 10.2337/diab.41.4.552. [DOI] [PubMed] [Google Scholar]
- James S. L. Role of nitric oxide in parasitic infections. Microbiol Rev. 1995 Dec;59(4):533–547. doi: 10.1128/mr.59.4.533-547.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kanazawa T., Asahi H., Hata H., Mochida K., Kagei N., Stadecker M. J. Arginine-dependent generation of reactive nitrogen intermediates is instrumental in the in vitro killing of protoscoleces of Echinococcus multilocularis by activated macrophages. Parasite Immunol. 1993 Nov;15(11):619–623. doi: 10.1111/j.1365-3024.1993.tb00575.x. [DOI] [PubMed] [Google Scholar]
- Kerwin J. F., Jr, Lancaster J. R., Jr, Feldman P. L. Nitric oxide: a new paradigm for second messengers. J Med Chem. 1995 Oct 27;38(22):4343–4362. doi: 10.1021/jm00022a001. [DOI] [PubMed] [Google Scholar]
- Nathan C. Natural resistance and nitric oxide. Cell. 1995 Sep 22;82(6):873–876. doi: 10.1016/0092-8674(95)90019-5. [DOI] [PubMed] [Google Scholar]
- Nathan C., Xie Q. W. Regulation of biosynthesis of nitric oxide. J Biol Chem. 1994 May 13;269(19):13725–13728. [PubMed] [Google Scholar]
- Nelson F. K., Greiner D. L., Shultz L. D., Rajan T. V. The immunodeficient scid mouse as a model for human lymphatic filariasis. J Exp Med. 1991 Mar 1;173(3):659–663. doi: 10.1084/jem.173.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oswald I. P., Wynn T. A., Sher A., James S. L. NO as an effector molecule of parasite killing: modulation of its synthesis by cytokines. Comp Biochem Physiol Pharmacol Toxicol Endocrinol. 1994 May;108(1):11–18. doi: 10.1016/1367-8280(94)90083-3. [DOI] [PubMed] [Google Scholar]
- Suswillo R. R., Owen D. G., Denham D. A. Infections of Brugia pahangi in conventional and nude (athymic) mice. Acta Trop. 1980 Dec;37(4):327–335. [PubMed] [Google Scholar]
- Taylor M. J., Cross H. F., Mohammed A. A., Trees A. J., Bianco A. E. Susceptibility of Brugia malayi and Onchocerca lienalis microfilariae to nitric oxide and hydrogen peroxide in cell-free culture and from IFN gamma-activated macrophages. Parasitology. 1996 Mar;112(Pt 3):315–322. doi: 10.1017/s0031182000065835. [DOI] [PubMed] [Google Scholar]
- Vincent A. L., Sodeman W. A., Winters A. Development of Brugia pahangi in normal and nude mice. J Parasitol. 1980 Jun;66(3):448–448. [PubMed] [Google Scholar]
- Woods M. L., 2nd, Mayer J., Evans T. G., Hibbs J. B., Jr Antiparasitic effects of nitric oxide in an in vitro murine model of Chlamydia trachomatis infection and an in vivo murine model of Leishmania major infection. Immunol Ser. 1994;60:179–195. [PubMed] [Google Scholar]
- Yates J. A., Schmitz K. A., Nelson F. K., Rajan T. V. Infectivity and normal development of third stage Brugia malayi maintained in vitro. J Parasitol. 1994 Dec;80(6):891–894. [PubMed] [Google Scholar]