Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Aug;64(8):3374–3378. doi: 10.1128/iai.64.8.3374-3378.1996

Functional characterization of a sialyltransferase-deficient mutant of Neisseria gonorrhoeae.

M J Gill 1, D P McQuillen 1, J P van Putten 1, L M Wetzler 1, J Bramley 1, H Crooke 1, N J Parsons 1, J A Cole 1, H Smith 1
PMCID: PMC174232  PMID: 8757878

Abstract

Previous studies indicate that sialylation of lipopolysaccharide (LPS) by host CMP-N-acetylneuraminic acid (CMP-NANA) catalyzed by bacterial sialyltransferase rendered gonococci resistant to killing by phagocytes, to entry into epithelial cell lines, to killing by immune serum and complement, and to absorption of complement component C3. These results have been confirmed by comparing a sialyltransferase-deficient mutant (strain JB1) with its parent (strain F62) in appropriate tests. In contrast to F62, JB1 was very susceptible to killing by human polymorphonuclear phagocytes in opsonophagocytosis tests and incubation with CMP-NANA did not decrease the level of killing. The inherent resistance of F62 in these tests was probably due to LPS sialylation by CMP-NANA and lactate present in the phagocytes. A JB1 variant expressing the invasion-associated Opa protein was as able to enter Chang human conjunctiva epithelial cells as an Opa-positive variant of F62, suggesting that the sialyltransferase is not required for Opa-mediated entry. After incubation with CMP-NANA, the number of F62 variant gonococci entering cells but not that of JB1 variant gonococci was drastically reduced. Both JB1 and F62 were killed by incubation with rabbit antibody to gonococcal major outer membrane protein, protein I, and human complement, but only F62 was rendered resistant to the killing by incubation with CMP-NANA. Finally, both JB1 and F62 absorbed similar amounts of complement component C3 and the binding was decreased by incubation with CMP-NANA only for the wild type, F62.

Full Text

The Full Text of this article is available as a PDF (191.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bramley J., Demarco de Hormaeche R., Constantinidou C., Nassif X., Parsons N., Jones P., Smith H., Cole J. A serum-sensitive, sialyltransferase-deficient mutant of Neisseria gonorrhoeae defective in conversion to serum resistance by CMP-NANA or blood cell extracts. Microb Pathog. 1995 Mar;18(3):187–195. doi: 10.1016/s0882-4010(95)90040-3. [DOI] [PubMed] [Google Scholar]
  2. Elkins C., Carbonetti N. H., Varela V. A., Stirewalt D., Klapper D. G., Sparling P. F. Antibodies to N-terminal peptides of gonococcal porin are bactericidal when gonococcal lipopolysaccharide is not sialylated. Mol Microbiol. 1992 Sep;6(18):2617–2628. doi: 10.1111/j.1365-2958.1992.tb01439.x. [DOI] [PubMed] [Google Scholar]
  3. Kim J. J., Zhou D., Mandrell R. E., Griffiss J. M. Effect of exogenous sialylation of the lipooligosaccharide of Neisseria gonorrhoeae on opsonophagocytosis. Infect Immun. 1992 Oct;60(10):4439–4442. doi: 10.1128/iai.60.10.4439-4442.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Mandrell R. E., Griffiss J. M., Smith H., Cole J. A. Distribution of a lipooligosaccharide-specific sialyltransferase in pathogenic and non-pathogenic Neisseria. Microb Pathog. 1993 Apr;14(4):315–327. doi: 10.1006/mpat.1993.1031. [DOI] [PubMed] [Google Scholar]
  5. Mandrell R. E., Lesse A. J., Sugai J. V., Shero M., Griffiss J. M., Cole J. A., Parsons N. J., Smith H., Morse S. A., Apicella M. A. In vitro and in vivo modification of Neisseria gonorrhoeae lipooligosaccharide epitope structure by sialylation. J Exp Med. 1990 May 1;171(5):1649–1664. doi: 10.1084/jem.171.5.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mandrell R. E., Smith H., Jarvis G. A., Griffiss J. M., Cole J. A. Detection and some properties of the sialyltransferase implicated in the sialylation of lipopolysaccharide of Neisseria gonorrhoeae. Microb Pathog. 1993 Apr;14(4):307–313. doi: 10.1006/mpat.1993.1030. [DOI] [PubMed] [Google Scholar]
  7. Morse S. A., Stein S., Hines J. Glucose metabolism in Neisseria gonorrhoeae. J Bacteriol. 1974 Nov;120(2):702–714. doi: 10.1128/jb.120.2.702-714.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Parsons N. J., Ashton P. R., Constantinidou C., Cole J. A., Smith H. Identification by mass spectrometry of CMP-NANA in diffusible material released from high M(r) blood cell fractions that confers serum resistance on gonococci. Microb Pathog. 1993 Apr;14(4):329–335. doi: 10.1006/mpat.1993.1032. [DOI] [PubMed] [Google Scholar]
  9. Parsons N. J., Boons G. J., Ashton P. R., Redfern P. D., Quirk P., Gao Y., Constantinidou C., Patel J., Bramley J., Cole J. A. Lactic acid is the factor in blood cell extracts which enhances the ability of CMP-NANA to sialylate gonococcal lipopolysaccharide and induce serum resistance. Microb Pathog. 1996 Feb;20(2):87–100. doi: 10.1006/mpat.1996.0008. [DOI] [PubMed] [Google Scholar]
  10. Rest R. F., Frangipane J. V. Growth of Neisseria gonorrhoeae in CMP-N-acetylneuraminic acid inhibits nonopsonic (opacity-associated outer membrane protein-mediated) interactions with human neutrophils. Infect Immun. 1992 Mar;60(3):989–997. doi: 10.1128/iai.60.3.989-997.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ross S. C., Densen P. Opsonophagocytosis of Neisseria gonorrhoeae: interaction of local and disseminated isolates with complement and neutrophils. J Infect Dis. 1985 Jan;151(1):33–41. doi: 10.1093/infdis/151.1.33. [DOI] [PubMed] [Google Scholar]
  12. Schneider H., Cross A. S., Kuschner R. A., Taylor D. N., Sadoff J. C., Boslego J. W., Deal C. D. Experimental human gonococcal urethritis: 250 Neisseria gonorrhoeae MS11mkC are infective. J Infect Dis. 1995 Jul;172(1):180–185. doi: 10.1093/infdis/172.1.180. [DOI] [PubMed] [Google Scholar]
  13. Smith H., Parsons N. J., Cole J. A. Sialylation of neisserial lipopolysaccharide: a major influence on pathogenicity. Microb Pathog. 1995 Dec;19(6):365–377. doi: 10.1006/mpat.1995.0071. [DOI] [PubMed] [Google Scholar]
  14. Van Putten J. P., Weel J. F., Grassmé H. U. Measurements of invasion by antibody labeling and electron microscopy. Methods Enzymol. 1994;236:420–437. doi: 10.1016/0076-6879(94)36031-6. [DOI] [PubMed] [Google Scholar]
  15. Veale D. R., Penn C. W., Smith H. Factors affecting the induction of phenotypically determined serum resistance of Neisseria gonorrhoeae grown in media containing serum or its diffusible components. J Gen Microbiol. 1981 Feb;122(2):235–245. doi: 10.1099/00221287-122-2-235. [DOI] [PubMed] [Google Scholar]
  16. Wetzler L. M., Barry K., Blake M. S., Gotschlich E. C. Gonococcal lipooligosaccharide sialylation prevents complement-dependent killing by immune sera. Infect Immun. 1992 Jan;60(1):39–43. doi: 10.1128/iai.60.1.39-43.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wetzler L. M., Blake M. S., Gotschlich E. C. Characterization and specificity of antibodies to protein I of Neisseria gonorrhoeae produced by injection with various protein I-adjuvant preparations. J Exp Med. 1988 Nov 1;168(5):1883–1897. doi: 10.1084/jem.168.5.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wetzler L. M., Gotschlich E. C., Blake M. S., Koomey J. M. The construction and characterization of Neisseria gonorrhoeae lacking protein III in its outer membrane. J Exp Med. 1989 Jun 1;169(6):2199–2209. doi: 10.1084/jem.169.6.2199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. van Putten J. P., Paul S. M. Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. EMBO J. 1995 May 15;14(10):2144–2154. doi: 10.1002/j.1460-2075.1995.tb07208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. van Putten J. P. Phase variation of lipopolysaccharide directs interconversion of invasive and immuno-resistant phenotypes of Neisseria gonorrhoeae. EMBO J. 1993 Nov;12(11):4043–4051. doi: 10.1002/j.1460-2075.1993.tb06088.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES