Skip to main content
Postgraduate Medical Journal logoLink to Postgraduate Medical Journal
. 2002 Apr;78(918):216–224. doi: 10.1136/pmj.78.918.216

Mechanisms of bacterial pathogenicity

J Wilson 1, M Schurr 1, C LeBlanc 1, R Ramamurthy 1, K Buchanan 1, C Nickerson 1
PMCID: PMC1742320  PMID: 11930024

Abstract

Pathogenic bacteria utilise a number of mechanisms to cause disease in human hosts. Bacterial pathogens express a wide range of molecules that bind host cell targets to facilitate a variety of different host responses. The molecular strategies used by bacteria to interact with the host can be unique to specific pathogens or conserved across several different species. A key to fighting bacterial disease is the identification and characterisation of all these different strategies. The availability of complete genome sequences for several bacterial pathogens coupled with bioinformatics will lead to significant advances toward this goal.

Full Text

The Full Text of this article is available as a PDF (153.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aderem A., Ulevitch R. J. Toll-like receptors in the induction of the innate immune response. Nature. 2000 Aug 17;406(6797):782–787. doi: 10.1038/35021228. [DOI] [PubMed] [Google Scholar]
  2. Akerley B. J., Miller J. F. Flagellin gene transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control system. J Bacteriol. 1993 Jun;175(11):3468–3479. doi: 10.1128/jb.175.11.3468-3479.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aktories K., Schmidt G., Just I. Rho GTPases as targets of bacterial protein toxins. Biol Chem. 2000 May-Jun;381(5-6):421–426. doi: 10.1515/BC.2000.054. [DOI] [PubMed] [Google Scholar]
  4. Andrews N. W., Portnoy D. A. Cytolysins from intracellular pathogens. Trends Microbiol. 1994 Aug;2(8):261–263. doi: 10.1016/0966-842x(94)90001-9. [DOI] [PubMed] [Google Scholar]
  5. Bachman M. A., Swanson M. S. RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase. Mol Microbiol. 2001 Jun;40(5):1201–1214. doi: 10.1046/j.1365-2958.2001.02465.x. [DOI] [PubMed] [Google Scholar]
  6. Bermudez L. E., Sangari F. J. Mycobacterial invasion of epithelial cells. Subcell Biochem. 2000;33:231–249. doi: 10.1007/978-1-4757-4580-1_10. [DOI] [PubMed] [Google Scholar]
  7. Bhattacharjee A. K., Jennings H. J., Kenny C. P., Martin A., Smith I. C. Structural determination of the polysaccharide antigens of Neisseria meningitidis serogroups Y, W-135, and BO1. Can J Biochem. 1976 Jan;54(1):1–8. doi: 10.1139/o76-001. [DOI] [PubMed] [Google Scholar]
  8. Chiang S. L., Mekalanos J. J., Holden D. W. In vivo genetic analysis of bacterial virulence. Annu Rev Microbiol. 1999;53:129–154. doi: 10.1146/annurev.micro.53.1.129. [DOI] [PubMed] [Google Scholar]
  9. Chuang T., Ulevitch R. J. Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim Biophys Acta. 2001 Mar 19;1518(1-2):157–161. doi: 10.1016/s0167-4781(00)00289-x. [DOI] [PubMed] [Google Scholar]
  10. Cleary P. P., Cue D. High frequency invasion of mammalian cells by beta hemolytic streptococci. Subcell Biochem. 2000;33:137–166. doi: 10.1007/978-1-4757-4580-1_7. [DOI] [PubMed] [Google Scholar]
  11. Daffé M., Etienne G. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tuber Lung Dis. 1999;79(3):153–169. doi: 10.1054/tuld.1998.0200. [DOI] [PubMed] [Google Scholar]
  12. Das U. N. Critical advances in septicemia and septic shock. Crit Care. 2000 Sep 7;4(5):290–296. doi: 10.1186/cc711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science. 1994 Apr 15;264(5157):375–382. doi: 10.1126/science.8153624. [DOI] [PubMed] [Google Scholar]
  14. Dehio C., Gray-Owen S. D., Meyer T. F. Host cell invasion by pathogenic Neisseriae. Subcell Biochem. 2000;33:61–96. doi: 10.1007/978-1-4757-4580-1_4. [DOI] [PubMed] [Google Scholar]
  15. Deretic V., Dikshit R., Konyecsni W. M., Chakrabarty A. M., Misra T. K. The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J Bacteriol. 1989 Mar;171(3):1278–1283. doi: 10.1128/jb.171.3.1278-1283.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Detweiler C. S., Cunanan D. B., Falkow S. Host microarray analysis reveals a role for the Salmonella response regulator phoP in human macrophage cell death. Proc Natl Acad Sci U S A. 2001 Apr 24;98(10):5850–5855. doi: 10.1073/pnas.091110098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. DiRita V. J. Co-ordinate expression of virulence genes by ToxR in Vibrio cholerae. Mol Microbiol. 1992 Feb;6(4):451–458. doi: 10.1111/j.1365-2958.1992.tb01489.x. [DOI] [PubMed] [Google Scholar]
  18. Doherty N., Trzcinski K., Pickerill P., Zawadzki P., Dowson C. G. Genetic diversity of the tet(M) gene in tetracycline-resistant clonal lineages of Streptococcus pneumoniae. Antimicrob Agents Chemother. 2000 Nov;44(11):2979–2984. doi: 10.1128/aac.44.11.2979-2984.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Domenighini M., Magagnoli C., Pizza M., Rappuoli R. Common features of the NAD-binding and catalytic site of ADP-ribosylating toxins. Mol Microbiol. 1994 Oct;14(1):41–50. doi: 10.1111/j.1365-2958.1994.tb01265.x. [DOI] [PubMed] [Google Scholar]
  20. Donnenberg M. S. Pathogenic strategies of enteric bacteria. Nature. 2000 Aug 17;406(6797):768–774. doi: 10.1038/35021212. [DOI] [PubMed] [Google Scholar]
  21. Dziewanowska K., Patti J. M., Deobald C. F., Bayles K. W., Trumble W. R., Bohach G. A. Fibronectin binding protein and host cell tyrosine kinase are required for internalization of Staphylococcus aureus by epithelial cells. Infect Immun. 1999 Sep;67(9):4673–4678. doi: 10.1128/iai.67.9.4673-4678.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Engel L. S., Hill J. M., Caballero A. R., Green L. C., O'Callaghan R. J. Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa. J Biol Chem. 1998 Jul 3;273(27):16792–16797. doi: 10.1074/jbc.273.27.16792. [DOI] [PubMed] [Google Scholar]
  23. Falzano L., Fiorentini C., Boquet P., Donelli G. Interaction of Escherichia coli cytotoxic necrotizing factor type 1 (CNF1) with cultured cells. Cytotechnology. 1993;11 (Suppl 1):S56–S58. [PubMed] [Google Scholar]
  24. Fang F. C., Libby S. J., Buchmeier N. A., Loewen P. C., Switala J., Harwood J., Guiney D. G. The alternative sigma factor katF (rpoS) regulates Salmonella virulence. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11978–11982. doi: 10.1073/pnas.89.24.11978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Finlay B. B., Falkow S. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev. 1997 Jun;61(2):136–169. doi: 10.1128/mmbr.61.2.136-169.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Fleiszig S. M., Wiener-Kronish J. P., Miyazaki H., Vallas V., Mostov K. E., Kanada D., Sawa T., Yen T. S., Frank D. W. Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infect Immun. 1997 Feb;65(2):579–586. doi: 10.1128/iai.65.2.579-586.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Flock J. I. Extracellular-matrix-binding proteins as targets for the prevention of Staphylococcus aureus infections. Mol Med Today. 1999 Dec;5(12):532–537. doi: 10.1016/s1357-4310(99)01597-x. [DOI] [PubMed] [Google Scholar]
  28. Forst S. A., Roberts D. L. Signal transduction by the EnvZ-OmpR phosphotransfer system in bacteria. Res Microbiol. 1994 Jun-Aug;145(5-6):363–373. doi: 10.1016/0923-2508(94)90083-3. [DOI] [PubMed] [Google Scholar]
  29. Frohloff G. Why is transmission of vancomycin-resistant enterococci on the increase? Prog Transplant. 2001 Mar;11(1):17–22. doi: 10.1177/152692480101100103. [DOI] [PubMed] [Google Scholar]
  30. Fujii G., Choe S. H., Bennett M. J., Eisenberg D. Crystallization of diphtheria toxin. J Mol Biol. 1991 Dec 20;222(4):861–864. doi: 10.1016/0022-2836(91)90577-s. [DOI] [PubMed] [Google Scholar]
  31. Galan J. E., Zhou D. Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8754–8761. doi: 10.1073/pnas.97.16.8754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. García E., Llull D., López R. Functional organization of the gene cluster involved in the synthesis of the pneumococcal capsule. Int Microbiol. 1999 Sep;2(3):169–176. [PubMed] [Google Scholar]
  33. Gold H. S., Moellering R. C., Jr Antimicrobial-drug resistance. N Engl J Med. 1996 Nov 7;335(19):1445–1453. doi: 10.1056/NEJM199611073351907. [DOI] [PubMed] [Google Scholar]
  34. Govan J. R., Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev. 1996 Sep;60(3):539–574. doi: 10.1128/mr.60.3.539-574.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Graham J. E., Clark-Curtiss J. E. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11554–11559. doi: 10.1073/pnas.96.20.11554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Groisman E. A. The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol. 2001 Mar;183(6):1835–1842. doi: 10.1128/JB.183.6.1835-1842.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Guha M., Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001 Feb;13(2):85–94. doi: 10.1016/s0898-6568(00)00149-2. [DOI] [PubMed] [Google Scholar]
  38. Hacker J., Kaper J. B. Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol. 2000;54:641–679. doi: 10.1146/annurev.micro.54.1.641. [DOI] [PubMed] [Google Scholar]
  39. Hackstadt T. Redirection of host vesicle trafficking pathways by intracellular parasites. Traffic. 2000 Feb;1(2):93–99. doi: 10.1034/j.1600-0854.2000.010201.x. [DOI] [PubMed] [Google Scholar]
  40. Hahn H. P. The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa--a review. Gene. 1997 Jun 11;192(1):99–108. doi: 10.1016/s0378-1119(97)00116-9. [DOI] [PubMed] [Google Scholar]
  41. Hamood A. N., Wick M. J., Iglewski B. H. Secretion of toxin A from Pseudomonas aeruginosa PAO1, PAK, and PA103 by Escherichia coli. Infect Immun. 1990 May;58(5):1133–1140. doi: 10.1128/iai.58.5.1133-1140.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., Holden D. W. Simultaneous identification of bacterial virulence genes by negative selection. Science. 1995 Jul 21;269(5222):400–403. doi: 10.1126/science.7618105. [DOI] [PubMed] [Google Scholar]
  43. Hoe N. P., Goguen J. D. Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol. 1993 Dec;175(24):7901–7909. doi: 10.1128/jb.175.24.7901-7909.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Horn D. L., Morrison D. C., Opal S. M., Silverstein R., Visvanathan K., Zabriskie J. B. What are the microbial components implicated in the pathogenesis of sepsis? Report on a symposium. Clin Infect Dis. 2000 Oct 11;31(4):851–858. doi: 10.1086/318127. [DOI] [PubMed] [Google Scholar]
  45. Humphreys S., Stevenson A., Bacon A., Weinhardt A. B., Roberts M. The alternative sigma factor, sigmaE, is critically important for the virulence of Salmonella typhimurium. Infect Immun. 1999 Apr;67(4):1560–1568. doi: 10.1128/iai.67.4.1560-1568.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Häcker H., Vabulas R. M., Takeuchi O., Hoshino K., Akira S., Wagner H. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med. 2000 Aug 21;192(4):595–600. doi: 10.1084/jem.192.4.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Joh D., Wann E. R., Kreikemeyer B., Speziale P., Hök M. Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells. Matrix Biol. 1999 Jun;18(3):211–223. doi: 10.1016/s0945-053x(99)00025-6. [DOI] [PubMed] [Google Scholar]
  48. Kang B. K., Schlesinger L. S. Characterization of mannose receptor-dependent phagocytosis mediated by Mycobacterium tuberculosis lipoarabinomannan. Infect Immun. 1998 Jun;66(6):2769–2777. doi: 10.1128/iai.66.6.2769-2777.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Kelly C. G., Younson J. S. Anti-adhesive strategies in the prevention of infectious disease at mucosal surfaces. Expert Opin Investig Drugs. 2000 Aug;9(8):1711–1721. doi: 10.1517/13543784.9.8.1711. [DOI] [PubMed] [Google Scholar]
  50. Kenny B., DeVinney R., Stein M., Reinscheid D. J., Frey E. A., Finlay B. B. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell. 1997 Nov 14;91(4):511–520. doi: 10.1016/s0092-8674(00)80437-7. [DOI] [PubMed] [Google Scholar]
  51. Klauser T., Pohlner J., Meyer T. F. The secretion pathway of IgA protease-type proteins in gram-negative bacteria. Bioessays. 1993 Dec;15(12):799–805. doi: 10.1002/bies.950151205. [DOI] [PubMed] [Google Scholar]
  52. Klose K. E. Regulation of virulence in Vibrio cholerae. Int J Med Microbiol. 2001 May;291(2):81–88. doi: 10.1078/1438-4221-00104. [DOI] [PubMed] [Google Scholar]
  53. Krieger M., Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem. 1994;63:601–637. doi: 10.1146/annurev.bi.63.070194.003125. [DOI] [PubMed] [Google Scholar]
  54. Lindsay J. A., Ruzin A., Ross H. F., Kurepina N., Novick R. P. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol. 1998 Jul;29(2):527–543. doi: 10.1046/j.1365-2958.1998.00947.x. [DOI] [PubMed] [Google Scholar]
  55. Liu T. Y., Gotschlich E. C., Jonssen E. K., Wysocki J. R. Studies on the meningococcal polysaccharides. I. Composition and chemical properties of the group A polysaccharide. J Biol Chem. 1971 May 10;246(9):2849–2858. [PubMed] [Google Scholar]
  56. Loewen P. C., Hengge-Aronis R. The role of the sigma factor sigma S (KatF) in bacterial global regulation. Annu Rev Microbiol. 1994;48:53–80. doi: 10.1146/annurev.mi.48.100194.000413. [DOI] [PubMed] [Google Scholar]
  57. Mahan M. J., Slauch J. M., Mekalanos J. J. Selection of bacterial virulence genes that are specifically induced in host tissues. Science. 1993 Jan 29;259(5095):686–688. doi: 10.1126/science.8430319. [DOI] [PubMed] [Google Scholar]
  58. Mazel D., Davies J. Antibiotic resistance in microbes. Cell Mol Life Sci. 1999 Nov 30;56(9-10):742–754. doi: 10.1007/s000180050021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Medzhitov R., Janeway C., Jr Innate immunity. N Engl J Med. 2000 Aug 3;343(5):338–344. doi: 10.1056/NEJM200008033430506. [DOI] [PubMed] [Google Scholar]
  60. Merritt E. A., Hol W. G. AB5 toxins. Curr Opin Struct Biol. 1995 Apr;5(2):165–171. doi: 10.1016/0959-440x(95)80071-9. [DOI] [PubMed] [Google Scholar]
  61. Merz A. J., So M. Interactions of pathogenic neisseriae with epithelial cell membranes. Annu Rev Cell Dev Biol. 2000;16:423–457. doi: 10.1146/annurev.cellbio.16.1.423. [DOI] [PubMed] [Google Scholar]
  62. Nakao H., Takeda T. Escherichia coli Shiga toxin. J Nat Toxins. 2000 Aug;9(3):299–313. [PubMed] [Google Scholar]
  63. Neth O., Jack D. L., Dodds A. W., Holzel H., Klein N. J., Turner M. W. Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun. 2000 Feb;68(2):688–693. doi: 10.1128/iai.68.2.688-693.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Novak R., Tuomanen E. Pathogenesis of pneumococcal pneumonia. Semin Respir Infect. 1999 Sep;14(3):209–217. [PubMed] [Google Scholar]
  65. Ochman H., Moran N. A. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science. 2001 May 11;292(5519):1096–1099. doi: 10.1126/science.1058543. [DOI] [PubMed] [Google Scholar]
  66. Oswald E., Sugai M., Labigne A., Wu H. C., Fiorentini C., Boquet P., O'Brien A. D. Cytotoxic necrotizing factor type 2 produced by virulent Escherichia coli modifies the small GTP-binding proteins Rho involved in assembly of actin stress fibers. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3814–3818. doi: 10.1073/pnas.91.9.3814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Parsot C., Mekalanos J. J. Expression of ToxR, the transcriptional activator of the virulence factors in Vibrio cholerae, is modulated by the heat shock response. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9898–9902. doi: 10.1073/pnas.87.24.9898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Periti P. Current treatment of sepsis and endotoxaemia. Expert Opin Pharmacother. 2000 Sep;1(6):1203–1217. doi: 10.1517/14656566.1.6.1203. [DOI] [PubMed] [Google Scholar]
  69. Sansonetti P. J., Tran Van Nhieu G., Egile C. Rupture of the intestinal epithelial barrier and mucosal invasion by Shigella flexneri. Clin Infect Dis. 1999 Mar;28(3):466–475. doi: 10.1086/515150. [DOI] [PubMed] [Google Scholar]
  70. Savarino S. J., Fasano A., Watson J., Martin B. M., Levine M. M., Guandalini S., Guerry P. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 represents another subfamily of E. coli heat-stable toxin. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3093–3097. doi: 10.1073/pnas.90.7.3093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Schagat T. L., Tino M. J., Wright J. R. Regulation of protein phosphorylation and pathogen phagocytosis by surfactant protein A. Infect Immun. 1999 Sep;67(9):4693–4699. doi: 10.1128/iai.67.9.4693-4699.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Schiavo G., Benfenati F., Poulain B., Rossetto O., Polverino de Laureto P., DasGupta B. R., Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992 Oct 29;359(6398):832–835. doi: 10.1038/359832a0. [DOI] [PubMed] [Google Scholar]
  73. Schurr M. J., Yu H., Boucher J. C., Hibler N. S., Deretic V. Multiple promoters and induction by heat shock of the gene encoding the alternative sigma factor AlgU (sigma E) which controls mucoidy in cystic fibrosis isolates of Pseudomonas aeruginosa. J Bacteriol. 1995 Oct;177(19):5670–5679. doi: 10.1128/jb.177.19.5670-5679.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Skurnik M., Toivanen P. LcrF is the temperature-regulated activator of the yadA gene of Yersinia enterocolitica and Yersinia pseudotuberculosis. J Bacteriol. 1992 Mar;174(6):2047–2051. doi: 10.1128/jb.174.6.2047-2051.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Stein P. E., Boodhoo A., Armstrong G. D., Heerze L. D., Cockle S. A., Klein M. H., Read R. J. Structure of a pertussis toxin-sugar complex as a model for receptor binding. Nat Struct Biol. 1994 Sep;1(9):591–596. doi: 10.1038/nsb0994-591. [DOI] [PubMed] [Google Scholar]
  76. Suh S. J., Silo-Suh L., Woods D. E., Hassett D. J., West S. E., Ohman D. E. Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol. 1999 Jul;181(13):3890–3897. doi: 10.1128/jb.181.13.3890-3897.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Tenover F. C., Biddle J. W., Lancaster M. V. Increasing resistance to vancomycin and other glycopeptides in Staphylococcus aureus. Emerg Infect Dis. 2001 Mar-Apr;7(2):327–332. doi: 10.3201/eid0702.010237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Teuber M. Spread of antibiotic resistance with food-borne pathogens. Cell Mol Life Sci. 1999 Nov 30;56(9-10):755–763. doi: 10.1007/s000180050022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Toder D. S., Gambello M. J., Iglewski B. H. Pseudomonas aeruginosa LasA: a second elastase under the transcriptional control of lasR. Mol Microbiol. 1991 Aug;5(8):2003–2010. doi: 10.1111/j.1365-2958.1991.tb00822.x. [DOI] [PubMed] [Google Scholar]
  80. Uhl M. A., Miller J. F. Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBO J. 1996 Mar 1;15(5):1028–1036. [PMC free article] [PubMed] [Google Scholar]
  81. Valdivia R. H., Falkow S. Fluorescence-based isolation of bacterial genes expressed within host cells. Science. 1997 Sep 26;277(5334):2007–2011. doi: 10.1126/science.277.5334.2007. [DOI] [PubMed] [Google Scholar]
  82. Vasil M. L., Ochsner U. A. The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol. 1999 Nov;34(3):399–413. doi: 10.1046/j.1365-2958.1999.01586.x. [DOI] [PubMed] [Google Scholar]
  83. Verhoef J., Mattsson E. The role of cytokines in gram-positive bacterial shock. Trends Microbiol. 1995 Apr;3(4):136–140. doi: 10.1016/s0966-842x(00)88902-7. [DOI] [PubMed] [Google Scholar]
  84. Wang Y., Kim K. S. Effect of rpoS mutations on stress-resistance and invasion of brain microvascular endothelial cells in Escherichia coli K1. FEMS Microbiol Lett. 2000 Jan 15;182(2):241–247. doi: 10.1111/j.1574-6968.2000.tb08902.x. [DOI] [PubMed] [Google Scholar]
  85. Welch R. A. Pore-forming cytolysins of gram-negative bacteria. Mol Microbiol. 1991 Mar;5(3):521–528. doi: 10.1111/j.1365-2958.1991.tb00723.x. [DOI] [PubMed] [Google Scholar]
  86. Wilkins T. D., Lyerly D. M. Clostridium difficile toxins attack Rho. Trends Microbiol. 1996 Feb;4(2):49–51. doi: 10.1016/0966-842X(96)81508-3. [DOI] [PubMed] [Google Scholar]
  87. Wren B. W. Microbial genome analysis: insights into virulence, host adaptation and evolution. Nat Rev Genet. 2000 Oct;1(1):30–39. doi: 10.1038/35049551. [DOI] [PubMed] [Google Scholar]
  88. Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990 Sep 21;249(4975):1431–1433. doi: 10.1126/science.1698311. [DOI] [PubMed] [Google Scholar]
  89. Zhang J. R., Mostov K. E., Lamm M. E., Nanno M., Shimida S., Ohwaki M., Tuomanen E. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell. 2000 Sep 15;102(6):827–837. doi: 10.1016/s0092-8674(00)00071-4. [DOI] [PubMed] [Google Scholar]
  90. Ziebuhr W., Ohlsen K., Karch H., Korhonen T., Hacker J. Evolution of bacterial pathogenesis. Cell Mol Life Sci. 1999 Nov 30;56(9-10):719–728. doi: 10.1007/s000180050018. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Postgraduate Medical Journal are provided here courtesy of BMJ Publishing Group

RESOURCES