Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Aug;64(8):3438–3441. doi: 10.1128/iai.64.8.3438-3441.1996

Structural similarities among malaria toxins insulin second messengers, and bacterial endotoxin.

H N Caro 1, N A Sheikh 1, J Taverne 1, J H Playfair 1, T W Rademacher 1
PMCID: PMC174245  PMID: 8757890

Abstract

Malaria toxin causes hypoglycemia and induction of tumor necrosis factor. Extracts of parasitized erythrocytes which were coeluted and copurified with one of the two subtypes of mammalian insulin-mimetic inositolphosphoglycans similarly induced fibroblast proliferation in the absence of serum. In addition, induction of tumor necrosis factor in macrophages by malaria toxin and by lipopolysaccharide from Escherichia coli was enhanced by pretreatment of these toxins with alpha-galactosidase. Thus, parasitized erythrocytes contain both soluble inositolphosphoglycan-like insulin second messengers and endotoxin-like lipidic molecules.

Full Text

The Full Text of this article is available as a PDF (190.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bate C. A., Kwiatkowski D. A monoclonal antibody that recognizes phosphatidylinositol inhibits induction of tumor necrosis factor alpha by different strains of Plasmodium falciparum. Infect Immun. 1994 Dec;62(12):5261–5266. doi: 10.1128/iai.62.12.5261-5266.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bate C. A., Taverne J., Playfair J. H. Detoxified exoantigens and phosphatidylinositol derivatives inhibit tumor necrosis factor induction by malarial exoantigens. Infect Immun. 1992 May;60(5):1894–1901. doi: 10.1128/iai.60.5.1894-1901.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bate C. A., Taverne J., Román E., Moreno C., Playfair J. H. Tumour necrosis factor induction by malaria exoantigens depends upon phospholipid. Immunology. 1992 Jan;75(1):129–135. [PMC free article] [PubMed] [Google Scholar]
  4. Carchon H., DeBruyne C. K. Purification and properties of coffee-bean alpha-D-galactosidase. Carbohydr Res. 1975 May;41:175–189. doi: 10.1016/s0008-6215(00)87017-2. [DOI] [PubMed] [Google Scholar]
  5. De Groote D., Gevaert Y., Lopez M., Gathy R., Fauchet F., Dehart I., Jadoul M., Radoux D., Franchimont P. Novel method for the measurement of cytokine production by a one-stage procedure. J Immunol Methods. 1993 Aug 9;163(2):259–267. doi: 10.1016/0022-1759(93)90130-y. [DOI] [PubMed] [Google Scholar]
  6. Elased K., Playfair J. H. Hypoglycemia and hyperinsulinemia in rodent models of severe malaria infection. Infect Immun. 1994 Nov;62(11):5157–5160. doi: 10.1128/iai.62.11.5157-5160.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gaulton G. N., Pratt J. C. Glycosylated phosphatidylinositol molecules as second messengers. Semin Immunol. 1994 Apr;6(2):97–104. doi: 10.1006/smim.1994.1014. [DOI] [PubMed] [Google Scholar]
  8. Grau G. E., Taylor T. E., Molyneux M. E., Wirima J. J., Vassalli P., Hommel M., Lambert P. H. Tumor necrosis factor and disease severity in children with falciparum malaria. N Engl J Med. 1989 Jun 15;320(24):1586–1591. doi: 10.1056/NEJM198906153202404. [DOI] [PubMed] [Google Scholar]
  9. Haibach F., Hata J., Mitra M., Dhar M., Harmata M., Sun P., Smith D. Purification and characterization of a Coffea canephora alpha-D-galactosidase isozyme. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1564–1571. doi: 10.1016/0006-291x(91)92117-3. [DOI] [PubMed] [Google Scholar]
  10. Ichishima E., Arai M., Shigematsu Y., Kumagai H., Sumida-Tanaka R. Purification of an acidic alpha-D-mannosidase from Aspergillus saitoi and specific cleavage of 1,2-alpha-D-mannosidic linkage in yeast mannan. Biochim Biophys Acta. 1981 Mar 13;658(1):45–53. doi: 10.1016/0005-2744(81)90248-5. [DOI] [PubMed] [Google Scholar]
  11. Jakobsen P. H., Bate C. A., Taverne J., Playfair J. H. Malaria: toxins, cytokines and disease. Parasite Immunol. 1995 May;17(5):223–231. doi: 10.1111/j.1365-3024.1995.tb01019.x. [DOI] [PubMed] [Google Scholar]
  12. Jakobsen P. H., Theander T. G., Jensen J. B., Mølbak K., Jepsen S. Soluble Plasmodium falciparum antigens contain carbohydrate moieties important for immune reactivity. J Clin Microbiol. 1987 Nov;25(11):2075–2079. doi: 10.1128/jcm.25.11.2075-2079.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kern P., Hemmer C. J., Van Damme J., Gruss H. J., Dietrich M. Elevated tumor necrosis factor alpha and interleukin-6 serum levels as markers for complicated Plasmodium falciparum malaria. Am J Med. 1989 Aug;87(2):139–143. doi: 10.1016/s0002-9343(89)80688-6. [DOI] [PubMed] [Google Scholar]
  14. McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nestler J. E., Romero G., Huang L. C., Zhang C. G., Larner J. Insulin mediators are the signal transduction system responsible for insulin's actions on human placental steroidogenesis. Endocrinology. 1991 Dec;129(6):2951–2956. doi: 10.1210/endo-129-6-2951. [DOI] [PubMed] [Google Scholar]
  16. Pandiella A., Beguinot L., Velu T. J., Meldolesi J. Transmembrane signalling at epidermal growth factor receptors overexpressed in NIH 3T3 cells. Phosphoinositide hydrolysis, cytosolic Ca2+ increase and alkalinization correlate with epidermal-growth-factor-induced cell proliferation. Biochem J. 1988 Aug 15;254(1):223–228. doi: 10.1042/bj2540223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rademacher T. W., Caro H., Kunjara S., Wang D. Y., Greenbaum A. L., McLean P. Inositolphosphoglycan second messengers. Braz J Med Biol Res. 1994 Feb;27(2):327–341. [PubMed] [Google Scholar]
  18. Raetz C. R. Biochemistry of endotoxins. Annu Rev Biochem. 1990;59:129–170. doi: 10.1146/annurev.bi.59.070190.001021. [DOI] [PubMed] [Google Scholar]
  19. Schofield L., Hackett F. Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J Exp Med. 1993 Jan 1;177(1):145–153. doi: 10.1084/jem.177.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Taverne J., Bate C. A., Kwiatkowski D., Jakobsen P. H., Playfair J. H. Two soluble antigens of Plasmodium falciparum induce tumor necrosis factor release from macrophages. Infect Immun. 1990 Sep;58(9):2923–2928. doi: 10.1128/iai.58.9.2923-2928.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Taverne J., Sheikh N., de Souza J. B., Playfair J. H., Probert L., Kollias G. Anaemia and resistance to malaria in transgenic mice expressing human tumour necrosis factor. Immunology. 1994 Jul;82(3):397–403. [PMC free article] [PubMed] [Google Scholar]
  22. Taylor K., Bate C. A., Carr R. E., Butcher G. A., Taverne J., Playfair J. H. Phospholipid-containing toxic malaria antigens induce hypoglycaemia. Clin Exp Immunol. 1992 Oct;90(1):1–5. doi: 10.1111/j.1365-2249.1992.tb05822.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Taylor K., Carr R., Playfair J. H., Saggerson E. D. Malarial toxic antigens synergistically enhance insulin signalling. FEBS Lett. 1992 Oct 26;311(3):231–234. doi: 10.1016/0014-5793(92)81109-y. [DOI] [PubMed] [Google Scholar]
  24. Thomas J. R., Dwek R. A., Rademacher T. W. Structure, biosynthesis, and function of glycosylphosphatidylinositols. Biochemistry. 1990 Jun 12;29(23):5413–5422. doi: 10.1021/bi00475a001. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES