Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Sep;64(9):3512–3517. doi: 10.1128/iai.64.9.3512-3517.1996

Involvement of superoxide and myeloperoxidase in oxygen-dependent killing of Staphylococcus aureus by neutrophils.

M B Hampton 1, A J Kettle 1, C C Winterbourn 1
PMCID: PMC174256  PMID: 8751892

Abstract

We have used a quantitative assay that measures independent rate constants for phagocytosis and killing of Staphylococcus aureus to investigate the involvement of superoxide and myeloperoxidase in bacterial killing by human neutrophils. To inhibit superoxide-dependent processes, superoxide dismutase was cross-linked to immunoglobulin G and the conjugate was attached to the surface of S. aureus via protein A in its cell wall. Myeloperoxidase was inhibited with azide, and myeloperoxidase-deficient neutrophils were used. Adding the NADPH oxidase inhibitor diphenyleneiodonium, to prevent superoxide production, decreased the killing rate to 25%, indicating that oxidative killing mechanisms predominate in this system. The rate constant for killing of S. aureus with superoxide dismutase attached was 70% of that for control bacteria linked to inactivated enzyme. Superoxide dismutase had no effect in the presence of diphenyleneiodonium. The rate of killing was decreased to 33% in the presence of azide and to 40% with myeloperoxidase-deficient neutrophils. Superoxide dismutase had no effect in the presence of azide. On the assumption that the oxidative and nonoxidative components of killing can be considered separately, the oxidative rate was decreased by almost half by superoxide dismutase and was about six times lower when myeloperoxidase was inactive. We conclude that myeloperoxidase-dependent processes are strongly favored by human neutrophils as their prime mechanism of oxidative killing of S. aureus and that superoxide makes a direct contribution to killing. Our results also suggest that superoxide acts in conjunction with a myeloperoxidase-dependent pathway.

Full Text

The Full Text of this article is available as a PDF (199.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babior B. M., Curnutte J. T., Kipnes R. S. Biological defense mechanisms. Evidence for the participation of superoxide in bacterial killing by xanthine oxidase. J Lab Clin Med. 1975 Feb;85(2):235–244. [PubMed] [Google Scholar]
  2. Bakkenist A. R., Wever R., Vulsma T., Plat H., van Gelder B. F. Isolation procedure and some properties of myeloperoxidase from human leucocytes. Biochim Biophys Acta. 1978 May 11;524(1):45–54. doi: 10.1016/0005-2744(78)90101-8. [DOI] [PubMed] [Google Scholar]
  3. Beaman B. L., Black C. M., Doughty F., Beaman L. Role of superoxide dismutase and catalase as determinants of pathogenicity of Nocardia asteroides: importance in resistance to microbicidal activities of human polymorphonuclear neutrophils. Infect Immun. 1985 Jan;47(1):135–141. doi: 10.1128/iai.47.1.135-141.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beaman B. L., Scates S. M., Moring S. E., Deem R., Misra H. P. Purification and properties of a unique superoxide dismutase from Nocardia asteroides. J Biol Chem. 1983 Jan 10;258(1):91–96. [PubMed] [Google Scholar]
  5. Beaman L., Beaman B. L. Monoclonal antibodies demonstrate that superoxide dismutase contributes to protection of Nocardia asteroides within the intact host. Infect Immun. 1990 Sep;58(9):3122–3128. doi: 10.1128/iai.58.9.3122-3128.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  7. Candeias L. P., Patel K. B., Stratford M. R., Wardman P. Free hydroxyl radicals are formed on reaction between the neutrophil-derived species superoxide anion and hypochlorous acid. FEBS Lett. 1993 Oct 25;333(1-2):151–153. doi: 10.1016/0014-5793(93)80394-a. [DOI] [PubMed] [Google Scholar]
  8. Cohen M. S., Britigan B. E., Hassett D. J., Rosen G. M. Do humans neutrophils form hydroxyl radical? Evaluation of an unresolved controversy. Free Radic Biol Med. 1988;5(2):81–88. doi: 10.1016/0891-5849(88)90033-0. [DOI] [PubMed] [Google Scholar]
  9. Dri P., Soranzo M. R., Cramer R., Menegazzi R., Miotti V., Patriarca P. Role of myeloperoxidase in respiratory burst of human polymorphonuclear leukocytes. Studies with myeloperoxidase-deficient subjects. Inflammation. 1985 Mar;9(1):21–31. doi: 10.1007/BF00915408. [DOI] [PubMed] [Google Scholar]
  10. Hampton M. B., Vissers M. C., Winterbourn C. C. A single assay for measuring the rates of phagocytosis and bacterial killing by neutrophils. J Leukoc Biol. 1994 Feb;55(2):147–152. doi: 10.1002/jlb.55.2.147. [DOI] [PubMed] [Google Scholar]
  11. Hampton M. B., Winterbourn C. C. Modification of neutrophil oxidant production with diphenyleneiodonium and its effect on bacterial killing. Free Radic Biol Med. 1995 Apr;18(4):633–639. doi: 10.1016/0891-5849(94)00181-i. [DOI] [PubMed] [Google Scholar]
  12. Hodgson E. K., Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry. 1975 Dec 2;14(24):5294–5299. doi: 10.1021/bi00695a010. [DOI] [PubMed] [Google Scholar]
  13. Humphreys J. M., Davies B., Hart C. A., Edwards S. W. Role of myeloperoxidase in the killing of Staphylococcus aureus by human neutrophils: studies with the myeloperoxidase inhibitor salicylhydroxamic acid. J Gen Microbiol. 1989 May;135(5):1187–1193. doi: 10.1099/00221287-135-5-1187. [DOI] [PubMed] [Google Scholar]
  14. James E. R. Superoxide dismutase. Parasitol Today. 1994 Dec;10(12):481–484. doi: 10.1016/0169-4758(94)90161-9. [DOI] [PubMed] [Google Scholar]
  15. Johnston R. B., Jr, Keele B. B., Jr, Misra H. P., Lehmeyer J. E., Webb L. S., Baehner R. L., RaJagopalan K. V. The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes. J Clin Invest. 1975 Jun;55(6):1357–1372. doi: 10.1172/JCI108055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kettle A. J., Gedye C. A., Hampton M. B., Winterbourn C. C. Inhibition of myeloperoxidase by benzoic acid hydrazides. Biochem J. 1995 Jun 1;308(Pt 2):559–563. doi: 10.1042/bj3080559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kettle A. J., Sangster D. F., Gebicki J. M., Winterbourn C. C. A pulse radiolysis investigation of the reactions of myeloperoxidase with superoxide and hydrogen peroxide. Biochim Biophys Acta. 1988 Aug 31;956(1):58–62. doi: 10.1016/0167-4838(88)90297-x. [DOI] [PubMed] [Google Scholar]
  18. Kettle A. J., Winterbourn C. C. Influence of superoxide on myeloperoxidase kinetics measured with a hydrogen peroxide electrode. Biochem J. 1989 Nov 1;263(3):823–828. doi: 10.1042/bj2630823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kettle A. J., Winterbourn C. C. Superoxide enhances hypochlorous acid production by stimulated human neutrophils. Biochim Biophys Acta. 1990 May 22;1052(3):379–385. doi: 10.1016/0167-4889(90)90146-5. [DOI] [PubMed] [Google Scholar]
  20. Kettle A. J., Winterbourn C. C. Superoxide modulates the activity of myeloperoxidase and optimizes the production of hypochlorous acid. Biochem J. 1988 Jun 1;252(2):529–536. doi: 10.1042/bj2520529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kettle A. J., Winterbourn C. C. Superoxide-dependent hydroxylation by myeloperoxidase. J Biol Chem. 1994 Jun 24;269(25):17146–17151. [PubMed] [Google Scholar]
  22. Kitahara M., Eyre H. J., Simonian Y., Atkin C. L., Hasstedt S. J. Hereditary myeloperoxidase deficiency. Blood. 1981 May;57(5):888–893. [PubMed] [Google Scholar]
  23. Klebanoff S. J., Hamon C. B. Role of myeloperoxidase-mediated antimicrobial systems in intact leukocytes. J Reticuloendothel Soc. 1972 Aug;12(2):170–196. [PubMed] [Google Scholar]
  24. Klebanoff S. J. Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacteriol. 1968 Jun;95(6):2131–2138. doi: 10.1128/jb.95.6.2131-2138.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Klebanoff S. J. Myeloperoxidase: contribution to the microbicidal activity of intact leukocytes. Science. 1970 Sep 11;169(3950):1095–1097. doi: 10.1126/science.169.3950.1095. [DOI] [PubMed] [Google Scholar]
  26. Klebanoff S. J. Role of the superoxide anion in the myeloperoxidase-mediated antimicrobial system. J Biol Chem. 1974 Jun 25;249(12):3724–3728. [PubMed] [Google Scholar]
  27. Klebanoff S. J., Schlechte K. G., Waltersdorph A. M. Stimulation of the bactericidal activity of polymorphonuclear leukocytes by manganese. J Leukoc Biol. 1993 Jun;53(6):666–672. doi: 10.1002/jlb.53.6.666. [DOI] [PubMed] [Google Scholar]
  28. Kusunose E., Ichihara K., Noda Y., Kusunose M. Superoxide dismutase from Mycobacterium tuberculosis. J Biochem. 1976 Dec;80(6):1343–1352. doi: 10.1093/oxfordjournals.jbchem.a131407. [DOI] [PubMed] [Google Scholar]
  29. Lehrer R. I., Hanifin J., Cline M. J. Defective bactericidal activity in myeloperoxidase-deficient human neutrophils. Nature. 1969 Jul 5;223(5201):78–79. doi: 10.1038/223078a0. [DOI] [PubMed] [Google Scholar]
  30. Mandell G. L. Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils. Infect Immun. 1974 Feb;9(2):337–341. doi: 10.1128/iai.9.2.337-341.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McManus D. C., Josephy P. D. Superoxide dismutase protects Escherichia coli against killing by human serum. Arch Biochem Biophys. 1995 Feb 20;317(1):57–61. doi: 10.1006/abbi.1995.1135. [DOI] [PubMed] [Google Scholar]
  32. Nauseef W. M., Metcalf J. A., Root R. K. Role of myeloperoxidase in the respiratory burst of human neutrophils. Blood. 1983 Mar;61(3):483–492. [PubMed] [Google Scholar]
  33. Nauseef W. M. Myeloperoxidase deficiency. Hematol Oncol Clin North Am. 1988 Mar;2(1):135–158. [PubMed] [Google Scholar]
  34. Papp-Szabò E., Firtel M., Josephy P. D. Comparison of the sensitivities of Salmonella typhimurium oxyR and katG mutants to killing by human neutrophils. Infect Immun. 1994 Jul;62(7):2662–2668. doi: 10.1128/iai.62.7.2662-2668.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Papp-Szabò E., Sutherland C. L., Josephy P. D. Superoxide dismutase and the resistance of Escherichia coli to phagocytic killing by human neutrophils. Infect Immun. 1993 Apr;61(4):1442–1446. doi: 10.1128/iai.61.4.1442-1446.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Quie P. G., White J. G., Holmes B., Good R. A. In vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease of childhood. J Clin Invest. 1967 Apr;46(4):668–679. doi: 10.1172/JCI105568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ramos C. L., Pou S., Britigan B. E., Cohen M. S., Rosen G. M. Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes. J Biol Chem. 1992 Apr 25;267(12):8307–8312. [PubMed] [Google Scholar]
  38. Rosen H., Klebanoff S. J. Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes. J Clin Invest. 1976 Jul;58(1):50–60. doi: 10.1172/JCI108458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schwartz C. E., Krall J., Norton L., McKay K., Kay D., Lynch R. E. Catalase and superoxide dismutase in Escherichia coli. J Biol Chem. 1983 May 25;258(10):6277–6281. [PubMed] [Google Scholar]
  40. Segal A. W. The electron transport chain of the microbicidal oxidase of phagocytic cells and its involvement in the molecular pathology of chronic granulomatous disease. J Clin Invest. 1989 Jun;83(6):1785–1793. doi: 10.1172/JCI114083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Spiegelhalder C., Gerstenecker B., Kersten A., Schiltz E., Kist M. Purification of Helicobacter pylori superoxide dismutase and cloning and sequencing of the gene. Infect Immun. 1993 Dec;61(12):5315–5325. doi: 10.1128/iai.61.12.5315-5325.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Thomas E. L., Learn D. B., Jefferson M. M., Weatherred W. Superoxide-dependent oxidation of extracellular reducing agents by isolated neutrophils. J Biol Chem. 1988 Feb 15;263(5):2178–2186. [PubMed] [Google Scholar]
  43. Thong Y. H. How important is the myeloperoxidase microbicidal system of phagocytic cells? Med Hypotheses. 1982 Mar;8(3):249–254. doi: 10.1016/0306-9877(82)90120-7. [DOI] [PubMed] [Google Scholar]
  44. Winterbourn C. C., Garcia R. C., Segal A. W. Production of the superoxide adduct of myeloperoxidase (compound III) by stimulated human neutrophils and its reactivity with hydrogen peroxide and chloride. Biochem J. 1985 Jun 15;228(3):583–592. doi: 10.1042/bj2280583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wolcott R. G., Franks B. S., Hannum D. M., Hurst J. K. Bactericidal potency of hydroxyl radical in physiological environments. J Biol Chem. 1994 Apr 1;269(13):9721–9728. [PubMed] [Google Scholar]
  46. Yoshitake S., Imagawa M., Ishikawa E., Niitsu Y., Urushizaki I., Nishiura M., Kanazawa R., Kurosaki H., Tachibana S., Nakazawa N. Mild and efficient conjugation of rabbit Fab' and horseradish peroxidase using a maleimide compound and its use for enzyme immunoassay. J Biochem. 1982 Nov;92(5):1413–1424. doi: 10.1093/oxfordjournals.jbchem.a134065. [DOI] [PubMed] [Google Scholar]
  47. Zhu L., Gunn C., Beckman J. S. Bactericidal activity of peroxynitrite. Arch Biochem Biophys. 1992 Nov 1;298(2):452–457. doi: 10.1016/0003-9861(92)90434-x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES