Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Sep;64(9):3548–3554. doi: 10.1128/iai.64.9.3548-3554.1996

Fungal beta-glucan interacts with vitronectin and stimulates tumor necrosis factor alpha release from macrophages.

E J Olson 1, J E Standing 1, N Griego-Harper 1, O A Hoffman 1, A H Limper 1
PMCID: PMC174262  PMID: 8751898

Abstract

beta-Glucans are polymers of D-glucose which represent major structural components of fungal cell walls. It was shown previously that fungi interact with macrophages through beta-glucan receptors, thereby inducing release of tumor necrosis factor alpha (TNF-alpha). Additional studies demonstrated that vitronectin, a host adhesive glycoprotein, binds to fungi and enhances macrophage recognition of these organisms. Since vitronectin contains a carbohydrate-binding region, we postulated that vitronectin binds fungal beta-glucans and subsequently augments macrophage TNF-alpha release in response to this fungal component. To study this, we first determined the release of TNF-alpha from alveolar macrophages stimulated with fungal beta-glucan. Maximal TNF-alpha release occurred with moderate concentrations of beta-glucan (100 to 200 micrograms/ml), whereas higher concentrations of beta-glucan (> or = 500 micrograms/ml) caused apparent suppression of the TNF-alpha activity released. This suppression of TNF-alpha activity by high concentrations of beta-glucan was mediated by the particulate beta-glucan binding soluble TNF-alpha, through the lectin-binding domain of the cytokine, rendering the TNF-alpha less available for measurement. Next, we assessed the interaction of vitronectin with beta-glucan. Binding of 125I-vitronectin to particulate fungal beta-glucan was dose dependent and specifically inhibitable by unlabeled vitronectin. Furthermore, treatment of beta-glucan with vitronectin substantially augmented macrophage TNF-alpha release in response to this fungal component. These findings demonstrate that fungal beta-glucan can directly modulate TNF-alpha release from macrophages. Further, these studies indicate that the host adhesive glycoprotein vitronectin specifically binds beta-glucan and augments macrophage cytokine release in response to this fungal element.

Full Text

The Full Text of this article is available as a PDF (258.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel G., Czop J. K. Stimulation of human monocyte beta-glucan receptors by glucan particles induces production of TNF-alpha and IL-1 beta. Int J Immunopharmacol. 1992 Nov;14(8):1363–1373. doi: 10.1016/0192-0561(92)90007-8. [DOI] [PubMed] [Google Scholar]
  2. Beutler B., Milsark I. W., Cerami A. C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985 Aug 30;229(4716):869–871. doi: 10.1126/science.3895437. [DOI] [PubMed] [Google Scholar]
  3. Castro M., Morgenthaler T. I., Hoffman O. A., Standing J. E., Rohrbach M. S., Limper A. H. Pneumocystis carinii induces the release of arachidonic acid and its metabolites from alveolar macrophages. Am J Respir Cell Mol Biol. 1993 Jul;9(1):73–81. doi: 10.1165/ajrcmb/9.1.73. [DOI] [PubMed] [Google Scholar]
  4. Castro M., Ralston N. V., Morgenthaler T. I., Rohrbach M. S., Limper A. H. Candida albicans stimulates arachidonic acid liberation from alveolar macrophages through alpha-mannan and beta-glucan cell wall components. Infect Immun. 1994 Aug;62(8):3138–3145. doi: 10.1128/iai.62.8.3138-3145.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cross C. E., Bancroft G. J. Ingestion of acapsular Cryptococcus neoformans occurs via mannose and beta-glucan receptors, resulting in cytokine production and increased phagocytosis of the encapsulated form. Infect Immun. 1995 Jul;63(7):2604–2611. doi: 10.1128/iai.63.7.2604-2611.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Czop J. K., Austen K. F. Generation of leukotrienes by human monocytes upon stimulation of their beta-glucan receptor during phagocytosis. Proc Natl Acad Sci U S A. 1985 May;82(9):2751–2755. doi: 10.1073/pnas.82.9.2751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Daum T., Rohrbach M. S. Zymosan induces selective release of arachidonic acid from rabbit alveolar macrophages via stimulation of a beta-glucan receptor. FEBS Lett. 1992 Sep 7;309(2):119–122. doi: 10.1016/0014-5793(92)81077-y. [DOI] [PubMed] [Google Scholar]
  8. Ezekowitz R. A., Williams D. J., Koziel H., Armstrong M. Y., Warner A., Richards F. F., Rose R. M. Uptake of Pneumocystis carinii mediated by the macrophage mannose receptor. Nature. 1991 May 9;351(6322):155–158. doi: 10.1038/351155a0. [DOI] [PubMed] [Google Scholar]
  9. Fels A. O., Cohn Z. A. The alveolar macrophage. J Appl Physiol (1985) 1986 Feb;60(2):353–369. doi: 10.1152/jappl.1986.60.2.353. [DOI] [PubMed] [Google Scholar]
  10. Goldman D., Lee S. C., Casadevall A. Pathogenesis of pulmonary Cryptococcus neoformans infection in the rat. Infect Immun. 1994 Nov;62(11):4755–4761. doi: 10.1128/iai.62.11.4755-4761.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hayman E. G., Pierschbacher M. D., Suzuki S., Ruoslahti E. Vitronectin--a major cell attachment-promoting protein in fetal bovine serum. Exp Cell Res. 1985 Oct;160(2):245–258. doi: 10.1016/0014-4827(85)90173-9. [DOI] [PubMed] [Google Scholar]
  12. Hoffman O. A., Olson E. J., Limper A. H. Fungal beta-glucans modulate macrophage release of tumor necrosis factor-alpha in response to bacterial lipopolysaccharide. Immunol Lett. 1993 Jul;37(1):19–25. doi: 10.1016/0165-2478(93)90127-n. [DOI] [PubMed] [Google Scholar]
  13. Hoffman O. A., Standing J. E., Limper A. H. Pneumocystis carinii stimulates tumor necrosis factor-alpha release from alveolar macrophages through a beta-glucan-mediated mechanism. J Immunol. 1993 May 1;150(9):3932–3940. [PubMed] [Google Scholar]
  14. Hyers T. M., Tricomi S. M., Dettenmeier P. A., Fowler A. A. Tumor necrosis factor levels in serum and bronchoalveolar lavage fluid of patients with the adult respiratory distress syndrome. Am Rev Respir Dis. 1991 Aug;144(2):268–271. doi: 10.1164/ajrccm/144.2.268. [DOI] [PubMed] [Google Scholar]
  15. Ito H., Yamamoto S., Kuroda S., Sakamoto H., Kajihara J., Kiyota T., Hayashi H., Kato M., Seko M. Molecular cloning and expression in Escherichia coli of the cDNA coding for rabbit tumor necrosis factor. DNA. 1986 Apr;5(2):149–156. doi: 10.1089/dna.1986.5.149. [DOI] [PubMed] [Google Scholar]
  16. Janusz M. J., Austen K. F., Czop J. K. Lysosomal enzyme release from human monocytes by particulate activators is mediated by beta-glucan inhibitable receptors. J Immunol. 1987 Jun 1;138(11):3897–3901. [PubMed] [Google Scholar]
  17. Janusz M. J., Austen K. F., Czop J. K. Phagocytosis of heat-killed blastospores of Candida albicans by human monocyte beta-glucan receptors. Immunology. 1988 Oct;65(2):181–185. [PMC free article] [PubMed] [Google Scholar]
  18. Jättelä M. Biologic activities and mechanisms of action of tumor necrosis factor-alpha/cachectin. Lab Invest. 1991 Jun;64(6):724–742. [PubMed] [Google Scholar]
  19. Kadish J. L., Choi C. C., Czop J. K. Phagocytosis of unopsonized zymosan particles by trypsin-sensitive and beta-glucan-inhibitable receptors on bone marrow-derived murine macrophages. Immunol Res. 1986;5(2):129–138. doi: 10.1007/BF02917587. [DOI] [PubMed] [Google Scholar]
  20. Kimura A., Sherwood R. L., Goldstein E. Glucan alteration of pulmonary antibacterial defense. J Reticuloendothel Soc. 1983 Jul;34(1):1–11. [PubMed] [Google Scholar]
  21. Kohl S., Pickering L. K., Diluzio N. R. Inhibition of human monocyte-macrophage and lymphocyte cytotoxicity to herpes simplex-infected cells by glucan. J Immunol Methods. 1979;29(4):361–368. doi: 10.1016/0022-1759(79)90007-3. [DOI] [PubMed] [Google Scholar]
  22. Kokoshis P. L., Williams D. L., Cook J. A., Di Luzio N. R. Increased resistance to Staphylococcus aureus infection and enhancement in serum lysozyme activity by glucan. Science. 1978 Mar 24;199(4335):1340–1342. doi: 10.1126/science.628841. [DOI] [PubMed] [Google Scholar]
  23. Kramer S. M., Carver M. E. Serum-free in vitro bioassay for the detection of tumor necrosis factor. J Immunol Methods. 1986 Nov 6;93(2):201–206. doi: 10.1016/0022-1759(86)90189-4. [DOI] [PubMed] [Google Scholar]
  24. Kunkel S. L., Chensue S. W., Phan S. H. Prostaglandins as endogenous mediators of interleukin 1 production. J Immunol. 1986 Jan;136(1):186–192. [PubMed] [Google Scholar]
  25. Kunkel S. L., Spengler M., Kwon G., May M. A., Remick D. G. Production and regulation of tumor necrosis factor alpha. A cellular and molecular analysis. Methods Achiev Exp Pathol. 1988;13:240–259. [PubMed] [Google Scholar]
  26. Kunkel S. L., Wiggins R. C., Chensue S. W., Larrick J. Regulation of macrophage tumor necrosis factor production by prostaglandin E2. Biochem Biophys Res Commun. 1986 May 29;137(1):404–410. doi: 10.1016/0006-291x(86)91224-6. [DOI] [PubMed] [Google Scholar]
  27. Le J., Vilcek J. Tumor necrosis factor and interleukin 1: cytokines with multiple overlapping biological activities. Lab Invest. 1987 Mar;56(3):234–248. [PubMed] [Google Scholar]
  28. Limper A. H. Adhesive glycoproteins in the pathogenesis of Pneumocystis carinii pneumonia: host defense or microbial offense? J Lab Clin Med. 1995 Jan;125(1):12–13. [PubMed] [Google Scholar]
  29. Limper A. H., Standing J. E., Hoffman O. A., Castro M., Neese L. W. Vitronectin binds to Pneumocystis carinii and mediates organism attachment to cultured lung epithelial cells. Infect Immun. 1993 Oct;61(10):4302–4309. doi: 10.1128/iai.61.10.4302-4309.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Limper A. H., Standing J. E. Vitronectin interacts with Candida albicans and augments organism attachment to the NR8383 macrophage cell line. Immunol Lett. 1994 Oct;42(3):139–144. doi: 10.1016/0165-2478(94)90077-9. [DOI] [PubMed] [Google Scholar]
  31. Lucas R., Magez S., De Leys R., Fransen L., Scheerlinck J. P., Rampelberg M., Sablon E., De Baetselier P. Mapping the lectin-like activity of tumor necrosis factor. Science. 1994 Feb 11;263(5148):814–817. doi: 10.1126/science.8303299. [DOI] [PubMed] [Google Scholar]
  32. Luo G., Niesel D. W., Shaban R. A., Grimm E. A., Klimpel G. R. Tumor necrosis factor alpha binding to bacteria: evidence for a high-affinity receptor and alteration of bacterial virulence properties. Infect Immun. 1993 Mar;61(3):830–835. doi: 10.1128/iai.61.3.830-835.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Manners D. J., Masson A. J., Patterson J. C. The structure of a beta-(1 leads to 3)-D-glucan from yeast cell walls. Biochem J. 1973 Sep;135(1):19–30. doi: 10.1042/bj1350019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Masur H., Jones T. C. The interaction in vitro of Pneumocystis carinii with macrophages and L-cells. J Exp Med. 1978 Jan 1;147(1):157–170. doi: 10.1084/jem.147.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Neese L. W., Standing J. E., Olson E. J., Castro M., Limper A. H. Vitronectin, fibronectin, and gp120 antibody enhance macrophage release of TNF-alpha in response to Pneumocystis carinii. J Immunol. 1994 May 1;152(9):4549–4556. [PubMed] [Google Scholar]
  36. Newman S. L., Gootee L. Colony-stimulating factors activate human macrophages to inhibit intracellular growth of Histoplasma capsulatum yeasts. Infect Immun. 1992 Nov;60(11):4593–4597. doi: 10.1128/iai.60.11.4593-4597.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Parker C. J., Frame R. N., Elstad M. R. Vitronectin (S protein) augments the functional activity of monocyte receptors for IgG and complement C3b. Blood. 1988 Jan;71(1):86–93. [PubMed] [Google Scholar]
  38. Patchen M. L., D'Alesandro M. M., Brook I., Blakely W. F., MacVittie T. J. Glucan: mechanisms involved in its "radioprotective" effect. J Leukoc Biol. 1987 Aug;42(2):95–105. doi: 10.1002/jlb.42.2.95. [DOI] [PubMed] [Google Scholar]
  39. Patchen M. L., DiLuzio N. R., Jacques P., MacVittie T. J. Soluble polyglycans enhance recovery from cobalt-60--induced hemopoietic injury. J Biol Response Mod. 1984 Dec;3(6):627–633. [PubMed] [Google Scholar]
  40. Patchen M. L., MacVittie T. J. Hemopoietic effects of intravenous soluble glucan administration. J Immunopharmacol. 1986;8(3):407–425. [PubMed] [Google Scholar]
  41. Pesanti E. L. Interaction of cytokines and alveolar cells with Pneumocystis carinii in vitro. J Infect Dis. 1991 Mar;163(3):611–616. doi: 10.1093/infdis/163.3.611. [DOI] [PubMed] [Google Scholar]
  42. Pesanti E. L., Tomicic T., Donta S. T. Binding of 125I-labelled tumor necrosis factor to Pneumocystis carinii and an insoluble cell wall fraction. J Protozool. 1991 Nov-Dec;38(6):28S–29S. [PubMed] [Google Scholar]
  43. RIGGI S. J., DI LUZIO N. R. Identification of a reticuloendothelial stimulating agent in zymosan. Am J Physiol. 1961 Feb;200:297–300. doi: 10.1152/ajplegacy.1961.200.2.297. [DOI] [PubMed] [Google Scholar]
  44. Rasmussen L. T., Seljelid R. Novel immunomodulators with pronounced in vivo effects caused by stimulation of cytokine release. J Cell Biochem. 1991 May;46(1):60–68. doi: 10.1002/jcb.240460110. [DOI] [PubMed] [Google Scholar]
  45. Reynolds J. A., Kastello M. D., Harrington D. G., Crabbs C. L., Peters C. J., Jemski J. V., Scott G. H., Di Luzio N. R. Glucan-induced enhancement of host resistance to selected infectious diseases. Infect Immun. 1980 Oct;30(1):51–57. doi: 10.1128/iai.30.1.51-57.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sakurai T., Hashimoto K., Suzuki I., Ohno N., Oikawa S., Masuda A., Yadomae T. Enhancement of murine alveolar macrophage functions by orally administered beta-glucan. Int J Immunopharmacol. 1992 Jul;14(5):821–830. doi: 10.1016/0192-0561(92)90080-5. [DOI] [PubMed] [Google Scholar]
  47. Seljelid R., Bøgwald J., Hoffman J., Larm O. A soluble beta-1,3-D-glucan derivative potentiates the cytostatic and cytolytic capacity of mouse peritoneal macrophages in vitro. Immunopharmacology. 1984 Feb;7(1):69–73. doi: 10.1016/0162-3109(84)90009-2. [DOI] [PubMed] [Google Scholar]
  48. Sherblom A. P., Decker J. M., Muchmore A. V. The lectin-like interaction between recombinant tumor necrosis factor and uromodulin. J Biol Chem. 1988 Apr 15;263(11):5418–5424. [PubMed] [Google Scholar]
  49. Sherwood E. R., Williams D. L., McNamee R. B., Jones E. L., Browder I. W., Di Luzio N. R. Enhancement of interleukin-1 and interleukin-2 production by soluble glucan. Int J Immunopharmacol. 1987;9(3):261–267. doi: 10.1016/0192-0561(87)90049-x. [DOI] [PubMed] [Google Scholar]
  50. Suzuki I., Sakurai T., Hashimoto K., Oikawa S., Masuda A., Ohsawa M., Yadomae T. Inhibition of experimental pulmonary metastasis of Lewis lung carcinoma by orally administered beta-glucan in mice. Chem Pharm Bull (Tokyo) 1991 Jun;39(6):1606–1608. doi: 10.1248/cpb.39.1606. [DOI] [PubMed] [Google Scholar]
  51. Suzuki S., Pierschbacher M. D., Hayman E. G., Nguyen K., Ohgren Y., Ruoslahti E. Domain structure of vitronectin. Alignment of active sites. J Biol Chem. 1984 Dec 25;259(24):15307–15314. [PubMed] [Google Scholar]
  52. Szabó T., Kadish J. L., Czop J. K. Biochemical properties of the ligand-binding 20-kDa subunit of the beta-glucan receptors on human mononuclear phagocytes. J Biol Chem. 1995 Feb 3;270(5):2145–2151. doi: 10.1074/jbc.270.5.2145. [DOI] [PubMed] [Google Scholar]
  53. Thompson I. M., Spence C. R., Lamm D. L., DiLuzio N. R. Immunochemotherapy of bladder carcinoma with glucan and cyclophosphamide. Am J Med Sci. 1987 Nov;294(5):294–300. doi: 10.1097/00000441-198711000-00002. [DOI] [PubMed] [Google Scholar]
  54. Tracey K. J., Fong Y., Hesse D. G., Manogue K. R., Lee A. T., Kuo G. C., Lowry S. F., Cerami A. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 1987 Dec 17;330(6149):662–664. doi: 10.1038/330662a0. [DOI] [PubMed] [Google Scholar]
  55. Tracey K. J., Lowry S. F., Fahey T. J., 3rd, Albert J. D., Fong Y., Hesse D., Beutler B., Manogue K. R., Calvano S., Wei H. Cachectin/tumor necrosis factor induces lethal shock and stress hormone responses in the dog. Surg Gynecol Obstet. 1987 May;164(5):415–422. [PubMed] [Google Scholar]
  56. Waldorf A. R., Levitz S. M., Diamond R. D. In vivo bronchoalveolar macrophage defense against Rhizopus oryzae and Aspergillus fumigatus. J Infect Dis. 1984 Nov;150(5):752–760. doi: 10.1093/infdis/150.5.752. [DOI] [PubMed] [Google Scholar]
  57. Yatohgo T., Izumi M., Kashiwagi H., Hayashi M. Novel purification of vitronectin from human plasma by heparin affinity chromatography. Cell Struct Funct. 1988 Aug;13(4):281–292. doi: 10.1247/csf.13.281. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES