Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Sep;64(9):3555–3564. doi: 10.1128/iai.64.9.3555-3564.1996

Identification of surface-exposed linear B-cell epitopes of the nonfimbrial adhesin CS31A of Escherichia coli by using overlapping peptides and antipeptide antibodies.

M C Méchin 1, E Rousset 1, J P Girardeau 1
PMCID: PMC174263  PMID: 8751899

Abstract

As a first step toward the design of an epitope vaccine, by using the nonfimbrial adhesin CS31A of Escherichia coli as a carrier, a low-resolution topological and epitope map of the CS31A subunit was developed by using solid-phase peptide synthesis and polyclonal rabbit antibodies raised against both native and denatured proteins. Peptides constituting antigenic epitopes on the major subunit (ClpG) of the multimeric CS31A antigen were identified by examining the binding of the antibodies to 249 overlapping nonapeptides covering the amino acid sequence of ClpG. With antibodies raised against denatured ClpG subunit, seven major epitope regions, corresponding to residues 10 to 18, 45 to 58, 88 to 107, 148 to 172, 187 to 196, 212 to 219, and 235 to 241, were located. Most of the epitopes were hydrophilic and were located in variable regions, residing largely in loop regions at the boundaries of secondary structural elements of ClpG. In contrast, antibodies raised against native CS31A antigen reacted only with the peptide AVNPNA (positions 179 to 184), demonstrating that this peptide was the only linear B-cell epitope of the native protein. The different immunogenic profiles of native CS31A antigen and denatured ClpG indicated that the denaturation process resulted in marked conformational changes in the protein, which could expose epitopes hidden or absent in native CS31A. To identify the surface-exposed epitopes, nine peptides covering the dominant antigenic regions of ClpG were synthesized and used to prepare site-specific antibodies. Antipeptide antibodies were tested, in a competitive enzyme-linked immunosorbent assay (ELISA), for cross-reactivity with native CS31A and denatured ClpG subunit. Four of these antipeptide antibodies bound to the native protein in an accessibility ELISA, indicating that residues 44 to 56, 174 to 190, 185 to 199, and 235 to 249 were surface exposed on CS31A. These data indicate that an immunodominant surface-exposed linear epitope was present in the region from positions 179 to 184 of ClpG in the native CS31A antigen on intact bacterial cells and suggest that the four surface-exposed epitopes constitute potential sites for insertions or substitutions with heterologous peptides.

Full Text

The Full Text of this article is available as a PDF (394.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakker D., Willemsen P. T., Simons L. H., van Zijderveld F. G., de Graaf F. K. Characterization of the antigenic and adhesive properties of FaeG, the major subunit of K88 fimbriae. Mol Microbiol. 1992 Jan;6(2):247–255. doi: 10.1111/j.1365-2958.1992.tb02006.x. [DOI] [PubMed] [Google Scholar]
  2. Bakker D., Willemsen P. T., Willems R. H., Huisman T. T., Mooi F. R., Oudega B., Stegehuis F., de Graaf F. K. Identification of minor fimbrial subunits involved in biosynthesis of K88 fimbriae. J Bacteriol. 1992 Oct;174(20):6350–6358. doi: 10.1128/jb.174.20.6350-6358.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bousquet F., Martin C., Girardeau J. P., Méchin M. C., Der Vartanian M., Laude H., Contrepois M. CS31A capsule-like antigen as an exposure vector for heterologous antigenic determinants. Infect Immun. 1994 Jun;62(6):2553–2561. doi: 10.1128/iai.62.6.2553-2561.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Casey T. A., Moseley S. L., Moon H. W. Characterization of bovine septicemic, bovine diarrheal, and human enteroinvasive Escherichia coli that hybridize with K88 and F41 accessory gene probes but do not express these adhesins. Microb Pathog. 1990 Jun;8(6):383–392. doi: 10.1016/0882-4010(90)90025-l. [DOI] [PubMed] [Google Scholar]
  5. Chong P., Yang Y. P., Fahim R., McVerry P., Sia C., Klein M. Immunogenicity of overlapping synthetic peptides covering the entire sequence of Haemophilus influenzae type b outer membrane protein P2. Infect Immun. 1993 Jun;61(6):2653–2661. doi: 10.1128/iai.61.6.2653-2661.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Contrepois M., Fairbrother J. M., Kaura Y. K., Girardeau J. P. Prevalence of CS31A and F165 surface antigens in Escherichia coli isolates from animals in France, Canada and India. FEMS Microbiol Lett. 1989 Jun;50(3):319–323. doi: 10.1016/0378-1097(89)90439-4. [DOI] [PubMed] [Google Scholar]
  7. Der Vartanian M., Méchin M. C., Jaffeux B., Bertin Y., Félix I., Gaillard-Martinie B. Permissible peptide insertions surrounding the signal peptide-mature protein junction of the ClpG prepilin: CS31A fimbriae of Escherichia coli as carriers of foreign sequences. Gene. 1994 Oct 11;148(1):23–32. doi: 10.1016/0378-1119(94)90229-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dykes C. W., Halliday I. J., Read M. J., Hobden A. N., Harford S. Nucleotide sequences of four variants of the K88 gene of porcine enterotoxigenic Escherichia coli. Infect Immun. 1985 Oct;50(1):279–283. doi: 10.1128/iai.50.1.279-283.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Geysen H. M., Meloen R. H., Barteling S. J. Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3998–4002. doi: 10.1073/pnas.81.13.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Geysen H. M., Rodda S. J., Mason T. J., Tribbick G., Schoofs P. G. Strategies for epitope analysis using peptide synthesis. J Immunol Methods. 1987 Sep 24;102(2):259–274. doi: 10.1016/0022-1759(87)90085-8. [DOI] [PubMed] [Google Scholar]
  11. Girardeau J. P., Bertin Y., Martin C., Der Vartanian M., Boeuf C. Sequence analysis of the clpG gene, which codes for surface antigen CS31A subunit: evidence of an evolutionary relationship between CS31A, K88, and F41 subunit genes. J Bacteriol. 1991 Dec;173(23):7673–7683. doi: 10.1128/jb.173.23.7673-7683.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Girardeau J. P., Der Vartanian M., Ollier J. L., Contrepois M. CS31A, a new K88-related fimbrial antigen on bovine enterotoxigenic and septicemic Escherichia coli strains. Infect Immun. 1988 Aug;56(8):2180–2188. doi: 10.1128/iai.56.8.2180-2188.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guinée P. A., Jansen W. H., Agterberg C. M. Detection of the K99 antigen by means of agglutination and immunoelectrophoresis in Escherichia coli isolates from calves and its correlation with entertoxigenicity. Infect Immun. 1976 May;13(5):1369–1377. doi: 10.1128/iai.13.5.1369-1377.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hopp T. P., Woods K. R. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3824–3828. doi: 10.1073/pnas.78.6.3824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hoschützky H., Nimmich W., Lottspeich F., Jann K. Isolation and characterization of the non-fimbrial adhesin NFA-4 from uropathogenic Escherichia coli O7:K98:H6. Microb Pathog. 1989 May;6(5):351–359. doi: 10.1016/0882-4010(89)90077-6. [DOI] [PubMed] [Google Scholar]
  16. Jallat C., Darfeuille-Michaud A., Girardeau J. P., Rich C., Joly B. Self-transmissible R plasmids encoding CS31A among human Escherichia coli strains isolated from diarrheal stools. Infect Immun. 1994 Jul;62(7):2865–2873. doi: 10.1128/iai.62.7.2865-2873.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klemm P., Mikkelsen L. Prediction of antigenic determinants and secondary structures of the K88 and CFA1 fimbrial proteins from enteropathogenic Escherichia coli. Infect Immun. 1982 Oct;38(1):41–45. doi: 10.1128/iai.38.1.41-45.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Klemm P. The complete amino-acid sequence of the K88 antigen, a fimbrial protein from Escherichia coli. Eur J Biochem. 1981 Jul;117(3):617–627. doi: 10.1111/j.1432-1033.1981.tb06382.x. [DOI] [PubMed] [Google Scholar]
  19. Korn A. P., Burnett R. M. Distribution and complementarity of hydropathy in multisubunit proteins. Proteins. 1991;9(1):37–55. doi: 10.1002/prot.340090106. [DOI] [PubMed] [Google Scholar]
  20. Korth M. J., Lara J. C., Moseley S. L. Epithelial cell invasion by bovine septicemic Escherichia coli. Infect Immun. 1994 Jan;62(1):41–47. doi: 10.1128/iai.62.1.41-47.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Krogfelt K. A., Meldal M., Klemm P. K88 fimbrial antigens: identification of antigenic determinants by the use of synthetic peptides. Microb Pathog. 1987 Jun;2(6):465–472. doi: 10.1016/0882-4010(87)90053-2. [DOI] [PubMed] [Google Scholar]
  22. Martin C., Boeuf C., Bousquet F. Escherichia coli CS31A fimbriae: molecular cloning, expression and homology with the K88 determinant. Microb Pathog. 1991 Jun;10(6):429–442. doi: 10.1016/0882-4010(91)90108-m. [DOI] [PubMed] [Google Scholar]
  23. Mooi F. R., de Graaf F. K., van Embden J. D. Cloning, mapping and expression of the genetic determinant that encodes for the K88ab antigen. Nucleic Acids Res. 1979 Mar;6(3):849–865. doi: 10.1093/nar/6.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Méchin M. C., Bertin Y., Girardeau J. P. Hydrophobic cluster analysis and secondary structure predictions revealed that major and minor structural subunits of K88-related adhesins of Escherichia coli share a common overall fold and differ structurally from other fimbrial subunits. FEBS Lett. 1995 May 15;364(3):319–324. doi: 10.1016/0014-5793(95)00417-8. [DOI] [PubMed] [Google Scholar]
  25. Pedersen P. A. Structure-function analysis of the K88ab fimbrial subunit protein from porcine enterotoxigenic Escherichia coli. Mol Microbiol. 1991 May;5(5):1073–1080. doi: 10.1111/j.1365-2958.1991.tb01879.x. [DOI] [PubMed] [Google Scholar]
  26. Phizicky E. M., Fields S. Protein-protein interactions: methods for detection and analysis. Microbiol Rev. 1995 Mar;59(1):94–123. doi: 10.1128/mr.59.1.94-123.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rost B., Sander C. Conservation and prediction of solvent accessibility in protein families. Proteins. 1994 Nov;20(3):216–226. doi: 10.1002/prot.340200303. [DOI] [PubMed] [Google Scholar]
  28. Rost B., Sander C. Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7558–7562. doi: 10.1073/pnas.90.16.7558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tan X. H., Ratnam M., Huang S. M., Smith P. L., Freisheim J. H. Mapping the antigenic epitopes of human dihydrofolate reductase by systematic synthesis of peptides on solid supports. J Biol Chem. 1990 May 15;265(14):8022–8026. [PubMed] [Google Scholar]
  30. Thiry G., Clippe A., Scarcez T., Petre J. Cloning of DNA sequences encoding foreign peptides and their expression in the K88 pili. Appl Environ Microbiol. 1989 Apr;55(4):984–993. doi: 10.1128/aem.55.4.984-993.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zhong G. M., Reid R. E., Brunham R. C. Mapping antigenic sites on the major outer membrane protein of Chlamydia trachomatis with synthetic peptides. Infect Immun. 1990 May;58(5):1450–1455. doi: 10.1128/iai.58.5.1450-1455.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van Zijderveld F. G., Anakotta J., Brouwers R. A., van Zijderveld A. M., Bakker D., de Graaf F. K. Epitope analysis of the F4 (K88) fimbrial antigen complex of enterotoxigenic Escherichia coli by using monoclonal antibodies. Infect Immun. 1990 Jun;58(6):1870–1878. doi: 10.1128/iai.58.6.1870-1878.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES