Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Sep;64(9):3565–3570. doi: 10.1128/iai.64.9.3565-3570.1996

Construction and characterization of a potential live oral carrier-based vaccine against Vibrio cholerae O139.

D Favre 1, S J Cryz Jr 1, J F Viret 1
PMCID: PMC174264  PMID: 8751900

Abstract

The rfb region from Vibrio cholerae O139 strain MO45 was cloned from cosmid gene banks established in Escherichia coli HB101, using an immunoblot assay for screening of the correct clones. Immunoblot analysis of lipopolysaccharide (LPS) preparations revealed the presence of two types of positive clones: (i) those expressing only a short core-linked O polysaccharide (SOPS) and (ii) those also expressing a highly polymerized capsular polysaccharide (CPS) not bound to the E. coli K-12 LPS core. In addition, the latter clones appear to contain a locus which may encode a putative regulator of SOPS and CPS chain length. Further characterization in E. coli showed that CPS constitutes a barrier against large particles such as the bacteriophage Ffm but not against bacteriophage lambda or P1. In addition, a portion of the K-12 LPS core may not be substituted with SOPS. Loci associated with the two clonal types were transferred into V. cholerae CH19, an rfbAB deletion mutant of CVD103-HgR deficient in the production of the homologous Inaba O polysaccharide. This resulted in the stable expression of SOPS, alone or together with CPS, that was indistinguishable from that of wild-type V. cholerae O139. Strains CH25 and CH26, which correspond to CH19 bearing the V. cholerae O139 rfb region integrated into the chromosome, were found to be genetically stable and essentially identical to the parent CVD103-HgR with respect to physiological properties such as cell motility, mercury resistance, toxicity, and production of the cholera toxin B subunit. Rabbits immunized with CH25 elicited high titers of anti-O139 SOPS- and CPS-specific serum antibodies. These strains possess characteristics desirable in candidate live oral vaccines against V. cholerae O139.

Full Text

The Full Text of this article is available as a PDF (448.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert M. J. Vibrio cholerae O139 Bengal. J Clin Microbiol. 1994 Oct;32(10):2345–2349. doi: 10.1128/jcm.32.10.2345-2349.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bastin D. A., Romana L. K., Reeves P. R. Molecular cloning and expression in Escherichia coli K-12 of the rfb gene cluster determining the O antigen of an E. coli O111 strain. Mol Microbiol. 1991 Sep;5(9):2223–2231. doi: 10.1111/j.1365-2958.1991.tb02152.x. [DOI] [PubMed] [Google Scholar]
  3. Batchelor R. A., Alifano P., Biffali E., Hull S. I., Hull R. A. Nucleotide sequences of the genes regulating O-polysaccharide antigen chain length (rol) from Escherichia coli and Salmonella typhimurium: protein homology and functional complementation. J Bacteriol. 1992 Aug;174(16):5228–5236. doi: 10.1128/jb.174.16.5228-5236.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berche P., Poyart C., Abachin E., Lelievre H., Vandepitte J., Dodin A., Fournier J. M. The novel epidemic strain O139 is closely related to the pandemic strain O1 of Vibrio cholerae. J Infect Dis. 1994 Sep;170(3):701–704. doi: 10.1093/infdis/170.3.701. [DOI] [PubMed] [Google Scholar]
  5. Bhadra R. K., Roychoudhury S., Banerjee R. K., Kar S., Majumdar R., Sengupta S., Chatterjee S., Khetawat G., Das J. Cholera toxin (CTX) genetic element in Vibrio cholerae O139. Microbiology. 1995 Aug;141(Pt 8):1977–1983. doi: 10.1099/13500872-141-8-1977. [DOI] [PubMed] [Google Scholar]
  6. Bik E. M., Bunschoten A. E., Gouw R. D., Mooi F. R. Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J. 1995 Jan 16;14(2):209–216. doi: 10.1002/j.1460-2075.1995.tb06993.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bruderer U., Fürer E., Cryz S. J., Jr, Lang A. B. Qualitative analysis of antibody binding. An in vitro assay for the evaluation and development of vaccines. J Immunol Methods. 1990 Oct 19;133(2):263–268. doi: 10.1016/0022-1759(90)90367-5. [DOI] [PubMed] [Google Scholar]
  8. Calia K. E., Murtagh M., Ferraro M. J., Calderwood S. B. Comparison of Vibrio cholerae O139 with V. cholerae O1 classical and El Tor biotypes. Infect Immun. 1994 Apr;62(4):1504–1506. doi: 10.1128/iai.62.4.1504-1506.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Comstock L. E., Johnson J. A., Michalski J. M., Morris J. G., Jr, Kaper J. B. Cloning and sequence of a region encoding a surface polysaccharide of Vibrio cholerae O139 and characterization of the insertion site in the chromosome of Vibrio cholerae O1. Mol Microbiol. 1996 Feb;19(4):815–826. doi: 10.1046/j.1365-2958.1996.407928.x. [DOI] [PubMed] [Google Scholar]
  10. Comstock L. E., Maneval D., Jr, Panigrahi P., Joseph A., Levine M. M., Kaper J. B., Morris J. G., Jr, Johnson J. A. The capsule and O antigen in Vibrio cholerae O139 Bengal are associated with a genetic region not present in Vibrio cholerae O1. Infect Immun. 1995 Jan;63(1):317–323. doi: 10.1128/iai.63.1.317-323.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Coster T. S., Killeen K. P., Waldor M. K., Beattie D. T., Spriggs D. R., Kenner J. R., Trofa A., Sadoff J. C., Mekalanos J. J., Taylor D. N. Safety, immunogenicity, and efficacy of live attenuated Vibrio cholerae O139 vaccine prototype. Lancet. 1995 Apr 15;345(8955):949–952. doi: 10.1016/s0140-6736(95)90698-3. [DOI] [PubMed] [Google Scholar]
  12. Favre D., Cryz S. J., Jr, Viret J. F. Development of Shigella sonnei live oral vaccines based on defined rfbInaba deletion mutants of Vibrio cholerae expressing the Shigella serotype D O polysaccharide. Infect Immun. 1996 Feb;64(2):576–584. doi: 10.1128/iai.64.2.576-584.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Favre D., Struck M. M., Cryz S. J., Jr, Viret J. F. Further molecular characterization and stability of the live oral attenuated cholera vaccine strain CVD103-HgR. Vaccine. 1996 Apr;14(6):526–531. doi: 10.1016/0264-410x(95)00218-p. [DOI] [PubMed] [Google Scholar]
  14. Hall R. H., Khambaty F. M., Kothary M. H., Keasler S. P., Tall B. D. Vibrio cholerae non-O1 serogroup associated with cholera gravis genetically and physiologically resembles O1 E1 Tor cholera strains. Infect Immun. 1994 Sep;62(9):3859–3863. doi: 10.1128/iai.62.9.3859-3863.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Janda J. M., Powers C., Bryant R. G., Abbott S. L. Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp. Clin Microbiol Rev. 1988 Jul;1(3):245–267. doi: 10.1128/cmr.1.3.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johnson J. A., Salles C. A., Panigrahi P., Albert M. J., Wright A. C., Johnson R. J., Morris J. G., Jr Vibrio cholerae O139 synonym bengal is closely related to Vibrio cholerae El Tor but has important differences. Infect Immun. 1994 May;62(5):2108–2110. doi: 10.1128/iai.62.5.2108-2110.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Karaolis D. K., Lan R., Reeves P. R. Molecular evolution of the seventh-pandemic clone of Vibrio cholerae and its relationship to other pandemic and epidemic V. cholerae isolates. J Bacteriol. 1994 Oct;176(20):6199–6206. doi: 10.1128/jb.176.20.6199-6206.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Karaolis D. K., Lan R., Reeves P. R. The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-O1 Vibrio cholerae. J Bacteriol. 1995 Jun;177(11):3191–3198. doi: 10.1128/jb.177.11.3191-3198.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene. 1988 Oct 15;70(1):191–197. doi: 10.1016/0378-1119(88)90117-5. [DOI] [PubMed] [Google Scholar]
  20. Ketley J. M., Michalski J., Galen J., Levine M. M., Kaper J. B. Construction of genetically marked Vibrio cholerae O1 vaccine strains. FEMS Microbiol Lett. 1993 Jul 15;111(1):15–21. doi: 10.1111/j.1574-6968.1993.tb06355.x. [DOI] [PubMed] [Google Scholar]
  21. Knirel Y. A., Paredes L., Jansson P. E., Weintraub A., Widmalm G., Albert M. J. Structure of the capsular polysaccharide of Vibrio cholerae O139 synonym Bengal containing D-galactose 4,6-cyclophosphate. Eur J Biochem. 1995 Sep 1;232(2):391–396. doi: 10.1111/j.1432-1033.1995.391zz.x. [DOI] [PubMed] [Google Scholar]
  22. Levine M. M., Kaper J. B., Herrington D., Losonsky G., Morris J. G., Clements M. L., Black R. E., Tall B., Hall R. Volunteer studies of deletion mutants of Vibrio cholerae O1 prepared by recombinant techniques. Infect Immun. 1988 Jan;56(1):161–167. doi: 10.1128/iai.56.1.161-167.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Macpherson D. F., Morona R., Beger D. W., Cheah K. C., Manning P. A. Genetic analysis of the rfb region of Shigella flexneri encoding the Y serotype O-antigen specificity. Mol Microbiol. 1991 Jun;5(6):1491–1499. doi: 10.1111/j.1365-2958.1991.tb00795.x. [DOI] [PubMed] [Google Scholar]
  24. Mandal B. K. Epidemic cholera due to a novel strain of V. cholerae non-01--the beginning of a new pandemic? J Infect. 1993 Sep;27(2):115–117. doi: 10.1016/0163-4453(93)94539-n. [DOI] [PubMed] [Google Scholar]
  25. Marcus H., Ketley J. M., Kaper J. B., Holmes R. K. Effects of DNase production, plasmid size, and restriction barriers on transformation of Vibrio cholerae by electroporation and osmotic shock. FEMS Microbiol Lett. 1990 Mar 1;56(1-2):149–154. doi: 10.1111/j.1574-6968.1990.tb04139.x. [DOI] [PubMed] [Google Scholar]
  26. Mitra S. N., Kar S., Ghosh R. K., Pajni S., Ghosh A. Presence of lysogenic phage in the outbreak strains of Vibrio cholerae O139. J Med Microbiol. 1995 Jun;42(6):399–403. doi: 10.1099/00222615-42-6-399. [DOI] [PubMed] [Google Scholar]
  27. Morona R., van den Bosch L., Manning P. A. Molecular, genetic, and topological characterization of O-antigen chain length regulation in Shigella flexneri. J Bacteriol. 1995 Feb;177(4):1059–1068. doi: 10.1128/jb.177.4.1059-1068.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Morris J. G., Jr, Losonsky G. E., Johnson J. A., Tacket C. O., Nataro J. P., Panigrahi P., Levin M. M. Clinical and immunologic characteristics of Vibrio cholerae O139 Bengal infection in North American volunteers. J Infect Dis. 1995 Apr;171(4):903–908. doi: 10.1093/infdis/171.4.903. [DOI] [PubMed] [Google Scholar]
  29. Morris J. G., Jr Vibrio cholerae O139 Bengal: emergence of a new epidemic strain of cholera. Infect Agents Dis. 1995 Mar;4(1):41–46. [PubMed] [Google Scholar]
  30. Pajni S., Chowdhury N. R., Ghosh A., Kar S., Ghosh R. K. Characterization of phage phi O139, a Vibrio cholerae O139 temperate bacteriophage with cohesive DNA termini. FEMS Microbiol Lett. 1995 Aug 15;131(1):69–74. doi: 10.1111/j.1574-6968.1995.tb07756.x. [DOI] [PubMed] [Google Scholar]
  31. Ramamurthy T., Garg S., Sharma R., Bhattacharya S. K., Nair G. B., Shimada T., Takeda T., Karasawa T., Kurazano H., Pal A. Emergence of novel strain of Vibrio cholerae with epidemic potential in southern and eastern India. Lancet. 1993 Mar 13;341(8846):703–704. doi: 10.1016/0140-6736(93)90480-5. [DOI] [PubMed] [Google Scholar]
  32. Sack D. A., Sack R. B. Test for enterotoxigenic Escherichia coli using Y-1 adrenal cells in miniculture. Infect Immun. 1975 Feb;11(2):334–336. doi: 10.1128/iai.11.2.334-336.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stroeher U. H., Jedani K. E., Dredge B. K., Morona R., Brown M. H., Karageorgos L. E., Albert M. J., Manning P. A. Genetic rearrangements in the rfb regions of Vibrio cholerae O1 and O139. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10374–10378. doi: 10.1073/pnas.92.22.10374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Swerdlow D. L., Ries A. A. Vibrio cholerae non-O1--the eighth pandemic? Lancet. 1993 Aug 14;342(8868):382–383. doi: 10.1016/0140-6736(93)92806-5. [DOI] [PubMed] [Google Scholar]
  35. Tacket C. O., Losonsky G., Nataro J. P., Comstock L., Michalski J., Edelman R., Kaper J. B., Levine M. M. Initial clinical studies of CVD 112 Vibrio cholerae O139 live oral vaccine: safety and efficacy against experimental challenge. J Infect Dis. 1995 Sep;172(3):883–886. doi: 10.1093/infdis/172.3.883. [DOI] [PubMed] [Google Scholar]
  36. Tacket C. O., Losonsky G., Nataro J. P., Cryz S. J., Edelman R., Fasano A., Michalski J., Kaper J. B., Levine M. M. Safety and immunogenicity of live oral cholera vaccine candidate CVD 110, a delta ctxA delta zot delta ace derivative of El Tor Ogawa Vibrio cholerae. J Infect Dis. 1993 Dec;168(6):1536–1540. doi: 10.1093/infdis/168.6.1536. [DOI] [PubMed] [Google Scholar]
  37. Takeda T., Ramamurthy T., Chowdhury A. S., Dutta D., Bhattacharya S. K., Deb B. C., Nair G. B., Takeda Y. Vibrio cholerae O1 vibriocidal and anti-cholera toxin antibodies in O139 Bengal cholera patients. J Infect. 1994 Sep;29(2):233–235. doi: 10.1016/s0163-4453(94)90962-8. [DOI] [PubMed] [Google Scholar]
  38. Viret J. F., Cryz S. J., Jr, Favre D. Expression of Shigella sonnei lipopolysaccharide in Vibrio cholerae. Mol Microbiol. 1996 Mar;19(5):949–963. doi: 10.1046/j.1365-2958.1996.435967.x. [DOI] [PubMed] [Google Scholar]
  39. Waldor M. K., Colwell R., Mekalanos J. J. The Vibrio cholerae O139 serogroup antigen includes an O-antigen capsule and lipopolysaccharide virulence determinants. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11388–11392. doi: 10.1073/pnas.91.24.11388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Waldor M. K., Mekalanos J. J. Emergence of a new cholera pandemic: molecular analysis of virulence determinants in Vibrio cholerae O139 and development of a live vaccine prototype. J Infect Dis. 1994 Aug;170(2):278–283. doi: 10.1093/infdis/170.2.278. [DOI] [PubMed] [Google Scholar]
  41. Weintraub A., Widmalm G., Jansson P. E., Jansson M., Hultenby K., Albert M. J. Vibrio cholerae O139 Bengal possesses a capsular polysaccharide which may confer increased virulence. Microb Pathog. 1994 Mar;16(3):235–241. doi: 10.1006/mpat.1994.1024. [DOI] [PubMed] [Google Scholar]
  42. Wilkinson R. G., Gemski P., Jr, Stocker B. A. Non-smooth mutants of Salmonella typhimurium: differentiation by phage sensitivity and genetic mapping. J Gen Microbiol. 1972 May;70(3):527–554. doi: 10.1099/00221287-70-3-527. [DOI] [PubMed] [Google Scholar]
  43. Yamamoto T., Nair G. B., Takeda Y. Emergence of tetracycline resistance due to a multiple drug resistance plasmid in Vibrio cholerae O139. FEMS Immunol Med Microbiol. 1995 Apr;11(2):131–136. doi: 10.1111/j.1574-695X.1995.tb00099.x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES