Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Sep;64(9):3584–3591. doi: 10.1128/iai.64.9.3584-3591.1996

Seroprevalence and specificity of human responses to the Plasmodium falciparum rhoptry protein Rhop-3 determined by using a C-terminal recombinant protein.

J C Yang 1, R E Blanton 1, C L King 1, H Fujioka 1, M Aikawa 1, T Y Sam-Yellowe 1
PMCID: PMC174267  PMID: 8751903

Abstract

Rhoptry proteins participate in invasion of erythrocytes by malaria parasites. Antibodies to some of these proteins can inhibit invasion and partially protect monkeys from disease. To examine human serological responses to the 110-kDa component (Rhop-3) of the high-molecular-weight rhoptry protein complex, two cDNA clones corresponding to Rhop-3 were identified by immunologic screening. A recombinant protein representing the C-terminal one-third of the Rhop-3 was used to assess the seroprevalence to this protein in geographically isolated populations with different patterns of malaria transmission. The immunoglobulin G (IgG) positivity rate for the recombinant Rhop-3 in an enzyme-linked immunosorbent assay was 30% in an area of Papua New Guinea where malaria is holoendemic. In Kenya, the prevalence rates were 43 and 36%, respectively, in an area of hyperendemicity and an area of seasonal transmission. By contrast, rates of IgG seroprevalence to an extract of Gambian strain of Plasmodium falciparum were 48, 90, and 97% respectively, in these populations. In these areas, the pattern of antibody recognition of Rhop-3 is more similar (1.7-fold maximum difference) than the parasite extract (5-fold difference). The difference in seroresponses may represent antigenic polymorphism in different parasite strains, while their similarity for the Rhop-3 fragment may represent conservation of this protein. Recombinant- and parasite extract-specific IgG was not found in individuals infected only with Plasmodium vivax. Cross-reactivity was seen in the IgM assay. In Mombasa (Kenya), maternal and cord Rhop-3-specific IgG activities were similar. Fetal antigen-specific IgM reactivity was generally undetectable for all antigens.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achidi E. A., Perlmann H., Salimonu L. S., Asuzu M. C., Perlmann P., Berzins K. Antibodies to Pf155/RESA and circumsporozoite protein of Plasmodium falciparum in paired maternal-cord sera from Nigeria. Parasite Immunol. 1995 Oct;17(10):535–540. doi: 10.1111/j.1365-3024.1995.tb00884.x. [DOI] [PubMed] [Google Scholar]
  2. Aikawa M., Atkinson C. T. Immunoelectron microscopy of parasites. Adv Parasitol. 1990;29:151–214. doi: 10.1016/s0065-308x(08)60106-2. [DOI] [PubMed] [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  4. Beall J. A., Mitchell G. F. Identification of a particular antigen from a parasite cDNA library using antibodies affinity purified from selected portions of Western blots. J Immunol Methods. 1986 Feb 12;86(2):217–223. doi: 10.1016/0022-1759(86)90456-4. [DOI] [PubMed] [Google Scholar]
  5. Borst P., Bitter W., McCulloch R., Van Leeuwen F., Rudenko G. Antigenic variation in malaria. Cell. 1995 Jul 14;82(1):1–4. doi: 10.1016/0092-8674(95)90044-6. [DOI] [PubMed] [Google Scholar]
  6. Brown H. J., Coppel R. L. Primary structure of a Plasmodium falciparum rhoptry antigen. Mol Biochem Parasitol. 1991 Nov;49(1):99–110. doi: 10.1016/0166-6851(91)90133-q. [DOI] [PubMed] [Google Scholar]
  7. Carothers A. M., Urlaub G., Mucha J., Grunberger D., Chasin L. A. Point mutation analysis in a mammalian gene: rapid preparation of total RNA, PCR amplification of cDNA, and Taq sequencing by a novel method. Biotechniques. 1989 May;7(5):494-6, 498-9. [PubMed] [Google Scholar]
  8. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cooper J. A., Ingram L. T., Bushell G. R., Fardoulys C. A., Stenzel D., Schofield L., Saul A. J. The 140/130/105 kilodalton protein complex in the rhoptries of Plasmodium falciparum consists of discrete polypeptides. Mol Biochem Parasitol. 1988 Jun;29(2-3):251–260. doi: 10.1016/0166-6851(88)90080-1. [DOI] [PubMed] [Google Scholar]
  10. Desowitz R. S., Elm J., Alpers M. P. Plasmodium falciparum-specific immunoglobulin G (IgG), IgM, and IgE antibodies in paired maternal-cord sera from east Sepik Province, Papua New Guinea. Infect Immun. 1993 Mar;61(3):988–993. doi: 10.1128/iai.61.3.988-993.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hommel M., David P. H., Oligino L. D. Surface alterations of erythrocytes in Plasmodium falciparum malaria. Antigenic variation, antigenic diversity, and the role of the spleen. J Exp Med. 1983 Apr 1;157(4):1137–1148. doi: 10.1084/jem.157.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Howard R. F., Jensen J. B., Franklin H. L. Reactivity profile of human anti-82-kilodalton rhoptry protein antibodies generated during natural infection with Plasmodium falciparum. Infect Immun. 1993 Jul;61(7):2960–2965. doi: 10.1128/iai.61.7.2960-2965.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Le Grice S. F., Grüninger-Leitch F. Rapid purification of homodimer and heterodimer HIV-1 reverse transcriptase by metal chelate affinity chromatography. Eur J Biochem. 1990 Jan 26;187(2):307–314. doi: 10.1111/j.1432-1033.1990.tb15306.x. [DOI] [PubMed] [Google Scholar]
  14. Marsh K., Howard R. J. Antigens induced on erythrocytes by P. falciparum: expression of diverse and conserved determinants. Science. 1986 Jan 10;231(4734):150–153. doi: 10.1126/science.2417315. [DOI] [PubMed] [Google Scholar]
  15. McBride J. S., Walliker D., Morgan G. Antigenic diversity in the human malaria parasite Plasmodium falciparum. Science. 1982 Jul 16;217(4556):254–257. doi: 10.1126/science.6178159. [DOI] [PubMed] [Google Scholar]
  16. Miller L. H., Good M. F., Milon G. Malaria pathogenesis. Science. 1994 Jun 24;264(5167):1878–1883. doi: 10.1126/science.8009217. [DOI] [PubMed] [Google Scholar]
  17. Murray V. Improved double-stranded DNA sequencing using the linear polymerase chain reaction. Nucleic Acids Res. 1989 Nov 11;17(21):8889–8889. doi: 10.1093/nar/17.21.8889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ridley R. G., Takacs B., Etlinger H., Scaife J. G. A rhoptry antigen of Plasmodium falciparum is protective in Saimiri monkeys. Parasitology. 1990 Oct;101(Pt 2):187–192. doi: 10.1017/s0031182000063228. [DOI] [PubMed] [Google Scholar]
  19. Sam-Yellowe T. Y., Fujioka H., Aikawa M., Messineo D. G. Plasmodium falciparum rhoptry proteins of 140/130/110 kd (Rhop-H) are located in an electron lucent compartment in the neck of the rhoptries. J Eukaryot Microbiol. 1995 May-Jun;42(3):224–231. doi: 10.1111/j.1550-7408.1995.tb01570.x. [DOI] [PubMed] [Google Scholar]
  20. Sam-Yellowe T. Y., Ndengele M. M. Monoclonal antibody epitope mapping of Plasmodium falciparum rhoptry proteins. Exp Parasitol. 1993 Feb;76(1):46–58. doi: 10.1006/expr.1993.1006. [DOI] [PubMed] [Google Scholar]
  21. Sam-Yellowe T. Y., Perkins M. E. Binding of Plasmodium falciparum rhoptry proteins to mouse erythrocytes and their possible role in invasion. Mol Biochem Parasitol. 1990 Feb;39(1):91–100. doi: 10.1016/0166-6851(90)90011-a. [DOI] [PubMed] [Google Scholar]
  22. Sam-Yellowe T. Y. Plasmodium falciparum: analysis of protein-protein interactions of the 140/130/110-kDa rhoptry protein complex using antibody and mouse erythrocyte binding assays. Exp Parasitol. 1993 Sep;77(2):179–194. doi: 10.1006/expr.1993.1075. [DOI] [PubMed] [Google Scholar]
  23. Sam-Yellowe T. Y. Rhoptry organelles of the apicomplexa: Their role in host cell invasion and intracellular survival. Parasitol Today. 1996 Aug;12(8):308–316. doi: 10.1016/0169-4758(96)10030-2. [DOI] [PubMed] [Google Scholar]
  24. Siddiqui W. A., Tam L. Q., Kramer K. J., Hui G. S., Case S. E., Yamaga K. M., Chang S. P., Chan E. B., Kan S. C. Merozoite surface coat precursor protein completely protects Aotus monkeys against Plasmodium falciparum malaria. Proc Natl Acad Sci U S A. 1987 May;84(9):3014–3018. doi: 10.1073/pnas.84.9.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smith T., Genton B., Baea K., Gibson N., Taime J., Narara A., Al-Yaman F., Beck H. P., Hii J., Alpers M. Relationships between Plasmodium falciparum infection and morbidity in a highly endemic area. Parasitology. 1994 Dec;109(Pt 5):539–549. doi: 10.1017/s0031182000076411. [DOI] [PubMed] [Google Scholar]
  26. Stephenson L. S., Latham M. C., Kurz K. M., Kinoti S. N., Oduori M. L., Crompton D. W. Relationships of Schistosoma haematobium, hookworm and malarial infections and metrifonate treatment to growth of Kenyan school children. Am J Trop Med Hyg. 1985 Nov;34(6):1109–1118. doi: 10.4269/ajtmh.1985.34.1109. [DOI] [PubMed] [Google Scholar]
  27. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  28. Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]
  29. Young R. A., Davis R. W. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1194–1198. doi: 10.1073/pnas.80.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. van Schravendijk M. R., Rock E. P., Marsh K., Ito Y., Aikawa M., Neequaye J., Ofori-Adjei D., Rodriguez R., Patarroyo M. E., Howard R. J. Characterization and localization of Plasmodium falciparum surface antigens on infected erythrocytes from west African patients. Blood. 1991 Jul 1;78(1):226–236. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES