Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Sep;64(9):3620–3623. doi: 10.1128/iai.64.9.3620-3623.1996

Decreased interleukin-4 and increased gamma interferon production by peripheral blood mononuclear cells of patients with Lyme borreliosis.

J Oksi 1, J Savolainen 1, J Pène 1, J Bòusquet 1, P Laippala 1, M K Viljanen 1
PMCID: PMC174272  PMID: 8751908

Abstract

Spontaneous and Borrelia burgdorferi-stimulated proliferation of peripheral blood mononuclear cells (PBMCs) and their interleukin-4 (IL-4), gamma interferon (IFN-gamma), and NO production were measured in 36 patients with second- or third-stage Lyme borreliosis (LB) and 11 control subjects. Spontaneous proliferation of PBMCs was significantly higher (P = 0.0003) in the LB patients than in the control subjects. Spontaneous production of IL-4 was significantly lower in patients than in control subjects (P = 0.0007), but spontaneous production of IFN-gamma was slightly higher in patients. The proliferative response of PBMCs to stimulation with B. burgdorferi was significantly higher (P = 0.01) in patients. The B. burgdorferi-induced production of IFN-gamma (P = 0.002) was also significantly higher in patients. The spontaneous and B. burgdorferi-induced production of NO showed no significant difference between patients and control subjects. These findings indicate that the activation of PBMCs in patients with late LB is enhanced in vivo. Furthermore, the production of IL-4 is effectively suppressed spontaneously, whereas the production of IFN-gamma by PBMCs is slightly increased spontaneously and significantly enhanced during stimulation with B. burgdorferi in vitro. The "spontaneous" or disease-induced alterations in cytokine levels of patients, in this case suppression of a Th2-type cytokine production and activation of a Th1-type cytokine production, may contribute to the pathogenesis of LB.

Full Text

The Full Text of this article is available as a PDF (184.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai K. I., Lee F., Miyajima A., Miyatake S., Arai N., Yokota T. Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem. 1990;59:783–836. doi: 10.1146/annurev.bi.59.070190.004031. [DOI] [PubMed] [Google Scholar]
  2. Barthold S. W., Bockenstedt L. K. Passive immunizing activity of sera from mice infected with Borrelia burgdorferi. Infect Immun. 1993 Nov;61(11):4696–4702. doi: 10.1128/iai.61.11.4696-4702.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beck G., Benach J. L., Habicht G. S. Isolation of interleukin 1 from joint fluids of patients with Lyme disease. J Rheumatol. 1989 Jun;16(6):800–806. [PubMed] [Google Scholar]
  4. Burmester G. R. Lessons from Lyme arthritis. Clin Exp Rheumatol. 1993 Mar-Apr;11 (Suppl 8):S23–S27. [PubMed] [Google Scholar]
  5. Chiao J. W., Pavia C., Riley M., Altmann-Lasekan W., Abolhassani M., Liegner K., Mittelman A. Antigens of Lyme disease of spirochaete Borrelia burgdorferi inhibits antigen or mitogen-induced lymphocyte proliferation. FEMS Immunol Med Microbiol. 1994 Feb;8(2):151–155. doi: 10.1111/j.1574-695X.1994.tb00437.x. [DOI] [PubMed] [Google Scholar]
  6. Chrétien I., Pène J., Brière F., De Waal Malefijt R., Rousset F., De Vries J. E. Regulation of human IgE synthesis. I. Human IgE synthesis in vitro is determined by the reciprocal antagonistic effects of interleukin 4 and interferon-gamma. Eur J Immunol. 1990 Feb;20(2):243–251. doi: 10.1002/eji.1830200203. [DOI] [PubMed] [Google Scholar]
  7. Defosse D. L., Johnson R. C. In vitro and in vivo induction of tumor necrosis factor alpha by Borrelia burgdorferi. Infect Immun. 1992 Mar;60(3):1109–1113. doi: 10.1128/iai.60.3.1109-1113.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fikrig E., Barthold S. W., Marcantonio N., Deponte K., Kantor F. S., Flavell R. A. Roles of OspA, OspB, and flagellin in protective immunity to Lyme borreliosis in laboratory mice. Infect Immun. 1992 Feb;60(2):657–661. doi: 10.1128/iai.60.2.657-661.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Forsberg P., Ernerudh J., Ekerfelt C., Roberg M., Vrethem M., Bergström S. The outer surface proteins of Lyme disease borrelia spirochetes stimulate T cells to secrete interferon-gamma (IFN-gamma): diagnostic and pathogenic implications. Clin Exp Immunol. 1995 Sep;101(3):453–460. doi: 10.1111/j.1365-2249.1995.tb03134.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  11. Habicht G. S., Katona L. I., Benach J. L. Cytokines and the pathogenesis of neuroborreliosis: Borrelia burgdorferi induces glioma cells to secrete interleukin-6. J Infect Dis. 1991 Sep;164(3):568–574. doi: 10.1093/infdis/164.3.568. [DOI] [PubMed] [Google Scholar]
  12. Keane-Myers A., Nickell S. P. Role of IL-4 and IFN-gamma in modulation of immunity to Borrelia burgdorferi in mice. J Immunol. 1995 Aug 15;155(4):2020–2028. [PubMed] [Google Scholar]
  13. Lahesmaa R., Shanafelt M. C., Steinman L., Peltz G. Immunopathogenesis of human inflammatory arthritis: lessons from Lyme and reactive arthritis. J Infect Dis. 1994 Oct;170(4):978–985. doi: 10.1093/infdis/170.4.978. [DOI] [PubMed] [Google Scholar]
  14. Lengl-Janssen B., Strauss A. F., Steere A. C., Kamradt T. The T helper cell response in Lyme arthritis: differential recognition of Borrelia burgdorferi outer surface protein A in patients with treatment-resistant or treatment-responsive Lyme arthritis. J Exp Med. 1994 Dec 1;180(6):2069–2078. doi: 10.1084/jem.180.6.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Liblau R. S., Singer S. M., McDevitt H. O. Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today. 1995 Jan;16(1):34–38. doi: 10.1016/0167-5699(95)80068-9. [DOI] [PubMed] [Google Scholar]
  16. Ma Y., Seiler K. P., Tai K. F., Yang L., Woods M., Weis J. J. Outer surface lipoproteins of Borrelia burgdorferi stimulate nitric oxide production by the cytokine-inducible pathway. Infect Immun. 1994 Sep;62(9):3663–3671. doi: 10.1128/iai.62.9.3663-3671.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Matyniak J. E., Reiner S. L. T helper phenotype and genetic susceptibility in experimental Lyme disease. J Exp Med. 1995 Mar 1;181(3):1251–1254. doi: 10.1084/jem.181.3.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mautino G., Paul-Eugène N., Chanez P., Vignola A. M., Kolb J. P., Bousquet J., Dugas B. Heterogeneous spontaneous and interleukin-4-induced nitric oxide production by human monocytes. J Leukoc Biol. 1994 Jul;56(1):15–20. doi: 10.1002/jlb.56.1.15. [DOI] [PubMed] [Google Scholar]
  19. Miller L. C., Isa S., Vannier E., Georgilis K., Steere A. C., Dinarello C. A. Live Borrelia burgdorferi preferentially activate interleukin-1 beta gene expression and protein synthesis over the interleukin-1 receptor antagonist. J Clin Invest. 1992 Sep;90(3):906–912. doi: 10.1172/JCI115966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moody K. D., Barthold S. W., Terwilliger G. A., Beck D. S., Hansen G. M., Jacoby R. O. Experimental chronic Lyme borreliosis in Lewis rats. Am J Trop Med Hyg. 1990 Feb;42(2):165–174. doi: 10.4269/ajtmh.1990.42.165. [DOI] [PubMed] [Google Scholar]
  21. Oksi J., Uksila J., Marjamäki M., Nikoskelainen J., Viljanen M. K. Antibodies against whole sonicated Borrelia burgdorferi spirochetes, 41-kilodalton flagellin, and P39 protein in patients with PCR- or culture-proven late Lyme borreliosis. J Clin Microbiol. 1995 Sep;33(9):2260–2264. doi: 10.1128/jcm.33.9.2260-2264.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rahn D. W., Malawista S. E. Lyme disease: recommendations for diagnosis and treatment. Ann Intern Med. 1991 Mar 15;114(6):472–481. doi: 10.7326/0003-4819-114-6-472. [DOI] [PubMed] [Google Scholar]
  23. Rao T. D., Fischer A., Frey A. B. CD4+ Th2 T cells elicited by immunization confer protective immunity to experimental Borrelia burgdorferi infection. Ann N Y Acad Sci. 1994 Aug 15;730:364–366. doi: 10.1111/j.1749-6632.1994.tb44294.x. [DOI] [PubMed] [Google Scholar]
  24. Shanafelt M. C., Soderberg C., Allsup A., Adelman D., Peltz G., Lahesmaa R. Costimulatory signals can selectively modulate cytokine production by subsets of CD4+ T cells. J Immunol. 1995 Feb 15;154(4):1684–1690. [PubMed] [Google Scholar]
  25. Söderström M., Link H., Sun J. B., Fredrikson S., Wang Z. Y., Huang W. X. Autoimmune T cell repertoire in optic neuritis and multiple sclerosis: T cells recognising multiple myelin proteins are accumulated in cerebrospinal fluid. J Neurol Neurosurg Psychiatry. 1994 May;57(5):544–551. doi: 10.1136/jnnp.57.5.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Viljanen M. K., Punnonen J. The effect of storage of antigen-coated polystyrene microwells on the detection of antibodies against Borrelia burgdorferi by enzyme immunoassay (EIA). J Immunol Methods. 1989 Nov 13;124(1):137–141. doi: 10.1016/0022-1759(89)90195-6. [DOI] [PubMed] [Google Scholar]
  27. Voskuhl R. R., Martin R., Bergman C., Dalal M., Ruddle N. H., McFarland H. F. T helper 1 (Th1) functional phenotype of human myelin basic protein-specific T lymphocytes. Autoimmunity. 1993;15(2):137–143. doi: 10.3109/08916939309043888. [DOI] [PubMed] [Google Scholar]
  28. Weis J. J., Ma Y., Erdile L. F. Biological activities of native and recombinant Borrelia burgdorferi outer surface protein A: dependence on lipid modification. Infect Immun. 1994 Oct;62(10):4632–4636. doi: 10.1128/iai.62.10.4632-4636.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weyand C. M., Hicok K. C., Hunder G. G., Goronzy J. J. Tissue cytokine patterns in patients with polymyalgia rheumatica and giant cell arteritis. Ann Intern Med. 1994 Oct 1;121(7):484–491. doi: 10.7326/0003-4819-121-7-199410010-00003. [DOI] [PubMed] [Google Scholar]
  30. Yang L., Weis J. H., Eichwald E., Kolbert C. P., Persing D. H., Weis J. J. Heritable susceptibility to severe Borrelia burgdorferi-induced arthritis is dominant and is associated with persistence of large numbers of spirochetes in tissues. Infect Immun. 1994 Feb;62(2):492–500. doi: 10.1128/iai.62.2.492-500.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yssel H., Shanafelt M. C., Soderberg C., Schneider P. V., Anzola J., Peltz G. Borrelia burgdorferi activates a T helper type 1-like T cell subset in Lyme arthritis. J Exp Med. 1991 Sep 1;174(3):593–601. doi: 10.1084/jem.174.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES